
A Deep Dive Into Cross-Dataset Entity Matching with
Large and Small Language Models

Zeyu Zhang
University of Amsterdam & Amsterdam UMC

z.zhang2@uva.nl

Paul Groth
University of Amsterdam

p.t.groth@uva.nl

Iacer Calixto
Amsterdam UMC, University of Amsterdam

i.coimbra@amsterdamumc.nl

Sebastian Schelter
BIFOLD & TU Berlin
schelter@tu-berlin.de

ABSTRACT
Entity matching (EM) is the problem of determining whether two
data records refer to the same real-world entity. A particularly
challenging scenario is cross-dataset entity matching, where the
matcher has to work with an unseen target dataset for which
no labelled examples are available. Cross-dataset EM is crucial
in scenarios where a high level of automation is required, and
where it is unlikely or impractical to force a domain expert
to manually label training data. Recently, approaches based on
language models have become popular for EM, and often promise
impressive transfer capabilities. However, there is a lack of a
comprehensive and systematic study of the cross-dataset EM
capabilities of these recent approaches. It is unclear, which
categories of language models are actually applicable in a cross-
dataset EM setting, how well current EM approaches perform
when they are evaluated systematically under a cross-dataset
setting, and what the relationship between the prediction quality
and deployment cost of various large language model-based EM
approaches is.

We address these open questions with the first comprehensive
and systematic study on cross-dataset entity matching, where
we evaluate eight matchers on 11 benchmark datasets, cover a
wide variety of model sizes and transfer learning approaches, and
also explore and quantify the relation between prediction quality
and deployment cost of the matching approaches. We find that
fine-tuned small models can perform on par with prompted large
models, that data-centric approaches outperform model-centric
approaches and that approaches using well-performing small
models can be deployed at an orders of magnitude lower cost
than comparably performing approaches with large commercial
models.

1 INTRODUCTION
Entity matching (EM) is the problem of determining whether
two data records refer to the same real-world entity. EM is a well-
studied problem over the past decade [5, 7, 12, 14, 17, 31, 36, 38, 52]
due to its high practical importance in data integration [2, 18, 22,
48, 61].
The need for cross-dataset entity matching. A typical
restriction in entity matching tasks is the reliance on labelled
examples, which are often scarce due to the high cost of human
annotation. A less restrictive yet more challenging scenario is
cross-dataset entity matching [50, 55, 60], where the matcher has
to work with an unseen target dataset for which no labelled

© 2025 Copyright held by the owner/author(s). Published in Proceedings of the
28th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2025, ISBN 978-3-89318-099-8 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

$0.00001 $0.0001 $0.001 $0.01 $0.1

Cost in dollars per 1,000 tokens (←lower is better, log scale)

60

70

80

A
ve

ra
ge

F
1

sc
or

e
(h

ig
he

r
is

b
et

te
r→

)

Ditto

Unicorn
AnyMatch[GPT-2]

AnyMatch[T5]

AnyMatch[LLaMA3.2]

MatchGPT[Mixtral]
MatchGPT[Solar]

MatchGPT[Beluga]

MatchGPT[GPT-4o-Mini]

MatchGPT[GPT-3.5-Turbo]

MatchGPT[GPT-4]

Ditto

Unicorn
AnyMatch[GPT-2]

AnyMatch[T5]

AnyMatch[LLaMA3.2]

MatchGPT[Mixtral]
MatchGPT[Solar]

MatchGPT[Beluga]

MatchGPT[GPT-4o-Mini]

MatchGPT[GPT-3.5-Turbo]

MatchGPT[GPT-4]

Figure 1: Prediction quality vs. deployment cost for lan-
guage model-based EM approaches in a cross-dataset set-
ting.

examples are available. The cross-dataset EM setup is crucial in
cloud scenarios where a high level of automation required, and
where it is unlikely or impractical to force a domain expert to
manually label training data. According to a recent talk from
Databricks for example, their top customers maintain hundreds
of thousands of tables on average [58] and all operations on
those tables must be fully automated. Moreover, data integration
services such as AWS Glue [45] currently still require end users
to manually label examples for entity matching [46], which
limits their applicability. Additionally, cross-dataset matchers
can be applied for duplicate detection [23] as part of data
cleaning in machine learning pipelines [1, 30], and are also
valuable as a primitive for entity alignment in tasks such as
table reclamation [15].
Open questions. Numerous EM algorithms and models have
been proposed in the past; however, few studies have explored
them in the cross-dataset context. Moreover, existing research
often focuses solely on comparing the predictive quality of differ-
ent methods, but overlooks the computational costs associated
with these models. These shortcomings lead us to the following
three research questions:
RQ1: Which categories of language models are actually applicable

in a cross-dataset EM setting?

There exists a large body of research on the EM task. Classical
rule-based approaches rely heavily on schema information and
semantic relationships to craft matching rules. Machine learning
(ML)-based approaches, on the other hand, involve building a
model to capture the similarity between entities. The Magellan
system [12] leverages classical machine learning methods. In
recent years, several deep learning-based solutions have been
proposed [36], for example based on graph neural networks [7,
17] or transformers [56, 59]. However, these approaches are not
tailored to the cross-dataset setting. The advent of language
models has led to a resurgence of research on EM, existing

approaches either fine-tune small language models (SLMs) [31,
50, 62] or leverage large language models (LLMs) for EM
via prompting [29, 37, 41, 60]. Some methods are explicitly
designed to address the cross-dataset setting as demonstrated
by ZeroER [55] and AnyMatch [62]. But in general, a careful
inspection of the model design and assumptions about the input
data is required to decide whether a given approach can even be
deployed in real-world cross-dataset settings.
RQ2: How well do current EM approaches perform when evaluated

systematically under a cross-dataset setting?
The majority of EM approaches are not specifically designed

for the cross-dataset setting and their cross-dataset capabilities
are often only evaluated on a small number of arbitrarily chosen
held-out datasets. For example, Jellyfish [60] is only evaluated
on two datasets with e-commerce products, while Unicorn [50]
is only evaluated on a single target dataset containing pairs of
academic publications, and even the comprehensive evaluation
of MatchGPT [41] still lacks common datasets from the food
and music domain. Furthermore, these studies often assume an
independent distribution of data samples across datasets, and
neglect the question of how domain similarity between datasets
influences performance. Thismakes it difficult to judge the overall
performance under a cross-dataset setting and necessitates a
systematic evaluation on a larger number of datasets.
RQ3: What is the trade-off between the prediction quality and

deployment cost of various language model-based EM ap-
proaches?

In recent years, language models have been widely applied to
structured data, for example to generate SQL queries from natural
language [6, 40] or for data preparation [28, 51, 54]. While there
is a lot of enthusiasm for leveraging language models for entity
matching, several of the proposed approaches rely on extremely
large proprietary models with hundreds of billions or even
trillions of parameters [53], which require expensive accelerator
hardware for deployment. As a result, these approaches incur
a hefty cost at a low throughput during inference. The latest
commercial LLMs often come with a “throughput of less than 1 KB
per second” [32] at a high cost imposed by their pay-per-token
model, which results in prices of “5 USD for processing just 5MB of
data” [32]. LLM-based matchers inherit this high computational
cost, which severely limits their scalability and applicability.
An indication of this is the fact that even relatively small-scale
academic datasets are down-sampled for experimentation with
LLM-based approaches [41]. We argue that this cost needs to be
taken into account, especially with respect to large-scale cloud
deployments of such models.
Overview. We address the outlined research questions with an
extensive experimental study. In total, we use over 425 GPU
hours and spend more than 290 dollars on OpenAI API calls for
our experiments. For RQ1, we list and categorise existing entity
matchers with cross-dataset capabilities in Section 3. We begin
by comparing matchers that are either parameter-free or do not
require explicit fine-tuning. For matchers leveraging pretrained
language models (PLMs), we categorise them into two groups:
model-aware and model-agnostic matchers. The former require
a carefully designed model structure, while the latter re-use an
off-the-shelf model and focus on the fine-tuning data only.

Next, we discuss our evaluation methodology in Section 2,
where we formalise the cross-dataset EM task, describe how to
systematically evaluate the cross-dataset performance of EM
approaches with a “leave-one-dataset-out” methodology, and lay

out howwe estimate the deployment cost of both openly available
and proprietary LLM-based approaches. Based on this foundation,
we tackle RQ2 and RQ3 in Section 4, where we evaluate both the
matching performance and computational cost of the outlined
methods. We compare the performance and cost differences
of approaches that leverage prompted LLMs with matchers
fine-tuned on PLMs through detailed experimental analysis.
We additionally investigate the benefits of providing additional
demonstrations when prompting LLMs, using several popular,
state-of-the-art, open-source LLMs in a cross-dataset setting.
Finally, we summarise the lessons learned and limitations from
our study in Section 5, and outline future research directions.
Contributions. In summary, this paper provides the following
contributions:

• Comprehensive study – We conduct the first comprehensive
and systematic study on cross-dataset entity matching, where
we evaluate eight matchers on 11 benchmark datasets, and
cover a wide variety of model sizes, domain specializations,
and transfer learning approaches (Sections 2, 3 & 4.1).

• Consideration of deployment cost – We explore and quantify
the trade-off between prediction quality and deployment cost
of the matching approaches (Section 4.2).

• Findings – We discuss our findings, e.g., that fine-tuned small
models perform on par with prompted large models, that
data-centric approaches outperform model-centric approaches
and that approaches using well-performing small models
can be deployed at an orders of magnitude lower cost than
comparably performing approaches with large commercial
models (Section 5).

• Reproducibility – We organize the source code of all avail-
able baselines within a unified evaluation framework, ensur-
ing that they are compatible and directly comparable. Our
codebase is publicly released at: https://github.com/Jantory/
cross-dataset-em-study

2 EVALUATION FRAMEWORK
We discuss our study design in the following. We first formally
define the cross-dataset EM setup (Section 2.1), then detail our
systematic evaluation via a “leave-one-dataset-out” strategy
(Section 2.2), and finally discuss how we estimate the deployment
cost of various LLM-based approaches (Section 2.3).

2.1 Cross-Dataset Entity Matching
Entity matching. The entity matching problem is to predict
whether the pair of records (𝑟𝑙 , 𝑟𝑟) with 𝑟𝑙 ∈ Rleft and 𝑟𝑟 ∈ Rright
refers to the same real-world entity or not. Rleft and Rright denote
two input relations with 𝑘 aligned attributes 𝐴 = {𝑎1, . . . , 𝑎𝑘 }.

Entity matching is often modelled as a binary classification
problem with a labelled training setDtrain ⊂ Rleft×Rright×{0, 1}.
State-of-the-art approaches [31] featurise the example pairs based
on their attribute names 𝑎1, . . . , 𝑎𝑘 and the aligned attribute
values 𝑣𝑙1 = 𝑟𝑙 [𝑎1], . . . , 𝑣𝑙𝑘 = 𝑟𝑙 [𝑎𝑘], 𝑣𝑟1 = 𝑟𝑟 [𝑎1], . . . , 𝑣𝑟𝑘 =

𝑟𝑟 [𝑎𝑘]. Furthermore, the attribute values may be augmented with
additional data, e.g., domain information. Note that our setup
assumes that there are no duplicates within a single relation.
Furthermore, real-world entity matching systems typically first
apply a blocking function to the set 𝑅𝑙 × 𝑅𝑟 to form smaller
candidate sets as input to the matcher. In this study, we focus on
the matchers themselves and evaluate general approaches which
can be easily plugged into existing matching systems.

https://github.com/Jantory/cross-dataset-em-study
https://github.com/Jantory/cross-dataset-em-study

Cross-dataset entity matching. In contrast to classical entity
matching, we are interested in a more challenging setting,
referred to as cross-dataset entity matching. In particular, we
investigate the entity matching problem under the following two
restrictions:
Restriction 1 - Unseen target data: A cross-dataset matcher will
not have access to labelled example pairs for the target relations
Rleft and Rright, which means there is no training set available for
the unseen target data Dtarget .

Restriction 2 - Lack of type information: There is no column
name or column type information accessible for the target relations
Rleft and Rright. A cross-dataset matcher can only enumerate the
attribute values 𝑟 [𝑎1], . . . , 𝑟 [𝑎𝑘] of a record 𝑟 from the target
relations in a string representation.

Use cases. A cross-dataset EM setup is crucial in scenarios where
a high level of automation required, and where it is unlikely or
impractical to force a domain expert to manually label training
data. Furthermore, schema and type information may often be
missing or unreliable in these scenarios. For instance, columns
in real-world tables are often wrongly typed as string columns
and have cryptic, hard-to-interpret names [13, 33].

Examples for such use cases include data integration services
in the cloud, such as AWS Glue [45], which provide automated
integration capabilities on enterprise data lakes. Currently, such
services require end users to manually label examples for entity
matching [46]. Theymatch our restrictionswell as they need to be
able to ingest and automatically process heterogeneous data from
various data sources (e.g., data in relational databases or Excel and
CSV files from distributed file systems). Providing competitive
matching performance out-of-the-box without labelled examples
would greatly improve the applicability of these services.

Another use case is duplicate detection and removal in ML
pipelines [1, 2, 23, 30], where the input dataset often originates
from various non-relational sources such log files and rarely
comes with labelled examples for potential duplicates. Large
organisations run hundreds of such pipelines in production [57].
Furthermore, cross-dataset entity matching is also valuable as
a primitive for entity alignment in other data integration tasks.
An example is table reclamation [15], where a “fast, approximate
instance comparison algorithm” is required for future work. Note
that these use cases depend on cost-efficient matchers and may
often require scalable matching on hundreds of thousands or
even millions of records.

2.2 “Leave-One-Dataset-Out” Evaluation
In the following, we introduce our evaluation strategy, starting
with a description of the dataset and the synthesis process
employed to address cross-dataset constraints. We then outline
the evaluation metrics used to assess the model’s performance,
considering both quality and cost dimensions.
Datasets. We experiment on 11 benchmark datasets detailed
in Table 1, including those commonly used in entity matching
research [31, 37, 41] and expand upon them. Their sample sizes
range from hundreds to tens of thousands. Additionally, they span
a variety of domains and include varying numbers of attributes.
To prevent data leakage during the fine-tuning phase, we conduct
a comprehensive comparison across different dataset pairs and
validate that no data samples are shared between datasets.

ABT
train

AMGO
train

WAAM
train

WDC
train

ABT
 valid

AMGO
valid

WAAM
valid

WDC
valid

ABT
 test

AMGO
test

WAAM
test

WDC
test

…

…

…

Evaluate on ABT

ABT
train

AMGO
train

WAAM
train

WDC
train

ABT
 valid

AMGO
valid

WAAM
valid

WDC
valid

ABT
 test

AMGO
test

WAAM
test

WDC
test

Fine-tune PLM / Prompt LLM

…

…

…

“Leave ABT
 Dataset Out”

All Datasets

Figure 2: Example evaluation on the ABT dataset using the
“leave-one-dataset-out” strategy.

Methodology. Evaluating models for the cross-dataset setting is
challenging, since example data for transfer learning is required.
Cross-dataset capabilities of entity matchers have not been
systematically evaluated in previous studies. When considered,
evaluations are typically conducted on a small number of
arbitrarily chosen held-out datasets. For instance, Jellyfish
[60] and Unicorn [50] are universal solutions for table-relevant
tasks that include cross-dataset EM support. However, despite
the availability of full benchmark datasets, Jellyfish evaluates
model performance on only two e-commerce product datasets,
while Unicorn is assessed on a single dataset comprising pairs
of academic publications. Even the comprehensive evaluation
of MatchGPT [41] relies on only six datasets, which limits its
coverage across diverse domains. In contrast, our goal is to
conduct a fair and thorough evaluation, rather than selecting
only a single dataset combination as seen in previous studies.

Table 1: The 11 benchmark datasets from [10, 41], orga-
nized by corresponding domain along with key statistics.

Dataset Domain #Attr. #Pos. #Neg.

ABT Abt-Buy web product 3 1,028 8,547
WDC Web Data Commons web product 3 2,250 7,992
DBAC DBLP-ACM citation 4 2,220 10,143
DBGO DBLP-Google citation 4 5,347 23,360
FOZA Fodors-Zagats restaurant 6 110 836
ZOYE Zomato-Yelp restaurant 7 90 354
AMGO Amazon-Google software 3 1,167 10,293
BEER Beer drink 4 68 382
ITAM iTunes-Amazon music 8 132 407
ROIM RottenTomato-IMDB movie 5 190 410
WAAM Walmart-Amazon electronics 5 962 9,280

Since there is no established benchmark for evaluating the
cross-dataset capabilities of entity matchers, we adopt a strategy
we term as ’leave-one-dataset-out’ evaluation to address the
cross-dataset constraints: to test on a given unseen target
dataset, we allow the matcher to access the other ten datasets
as transfer learning data. These ten datasets can be utilised to
construct the data for fine-tuning the matching model or to select
demonstrations for prompting the language model e.g., when
evaluated on ABT, a model can use the remaining ten datasets
(WDC, DBAC, DBGO, FOZA, ZOYE, AMGO, BEER, ITAM, ROIM, and WAAM)
for transfer learning, and can optionally select demonstrations
from them for prompting. A visual illustration of this process
can be found in Figure 2.

Note that this methodology adheres to the cross-dataset
restrictions in Section 2.1, as no examples from the target dataset
are used during fine-tuning or prompting, and we ensure that
no column names are used as well. We make all variants of the
trained models available as part of our supplemental material.

Metrics. In line with existing research, we report the F1 score
for each setting, which combines precision and recall , and is
particularly useful in situations where the class distribution is
imbalanced. Formally, the F1 score is defined as:

F1 = 2 × Precision × Recall
Precision + Recall

where:

Precision =
True Positives (TP)

True Positives (TP) + False Positives (FP)
and

Recall =
True Positives (TP)

True Positives (TP) + False Negatives (FN)
To compare the predictive quality of different baselines, we

calculate the macro-averaged F1 score for each dataset, treating
all datasets as equally important. This is represented by the
“Mean” column in Table 2 and Table 3.
Repetitions. To quantify the uncertainty of different runs,
we employ five distinct random seeds to conduct experiments
multiple times. When a language model is used as the matcher,
data serialization is always required, converting records from
relations into strings. As language models are sensitive to the
input sequence, we also use the corresponding random seeds
to vary the serialised input for the language model. Specifically,
during serialization, we randomly shuffle the order of columns
to alter their occurrence in the input sequence. These different
sequences are input to the same model to generate predictions.
We report both the mean F1 score and its standard deviation
when presenting the results.

2.3 Measuring the Quality-Cost Trade-off
In addition to evaluating the predictive performance of various
languagemodels, we also compare their associated computational
costs in terms of dollars per 1K tokens processed. The models
employed for this comparison fall into two categories: publicly
available models and API-based proprietary models. For the
publicly available models, we estimate their inference throughput
and calculate their deployment cost based on the GPU machine
rates from cloud from cloud vendors such as Amazon Web
Services. In contrast, for the proprietary API-based models,
we directly use the provider’s listed cost per 1K tokens for
comparison. Since all approaches frame entity matching under
a language model scenario as a sentence classification task, the
model is required to generate only a binary output—either "Yes" or
"No"—for a given input. As the input length is significantly longer
than the output, we disregard the output cost in our evaluation
and focus solely on the cost of processing the input.

By systematically comparing both types of models in terms
of performance and cost, we give insights into the trade-off
involved in choosing between publicly available and proprietary
solutions for entity matching tasks. Ultimately, this analysis not
only contributes to the understanding of model efficiency but
also assists practitioners in making informed decisions based on
their specific resource constraints and application needs.

3 CROSS-DATASET EM APPROACHES
In this section, we address RQ1 by outliningmatching approaches
with cross-dataset capabilities, which we include in our study
(an overview can be found in Table 2). Most of these are based
on pretrained language models, with one exception being a
parameter-free approach. Following a recent survey [16], we

Table 2: An overview of the methods with cross-dataset
capabilities included in our study.

Matcher PLM Type Availability

ZeroER No Parameter-free https://github.com/chu-data-lab/zeroer
Ditto Small Model-aware https://github.com/megagonlabs/ditto
Unicorn Small Model-aware https://github.com/ruc-datalab/Unicorn
AnyMatch Small Model-agnostic https://github.com/Jantory/anymatch
Jellyfish Large Model-agnostic https://huggingface.co/NECOUDBFM/Jellyfish-13B
TableGPT Large Model-agnostic https://github.com/microsoft/Table-GPT
MatchGPT Large Model-agnostic https://github.com/wbsg-uni-mannheim/MatchGPT

classify a language model as a large language model if its
parameter size exceeds one billion, while models with fewer
parameters are categorised as small language models. We refer to
approaches which require custom model architectures as model-
aware matchers, and those requiring no model customisation as
model-agnostic matchers.

3.1 Parameter-Free Models
ZeroER. A seminal work in the cross-dataset entity matching
area is ZeroER [55], which is a parameter-free method, explicitly
designed for the cross-dataset case without any training data
for the target dataset (termed as “zero-shot” EM in the original
work). The approach is built on the observation that the similarity
vectors for matching records are distributed differently than
the similarity vectors for non-matching records. However, this
approach has several drawbacks: it requires information about
the column types and the selection of similarity functions, is
only applicable in a batch setting (making it unable to match
individual record pairs in isolation, which complicates debugging
false predictions), and relies on distributional assumptions that
may not hold for every dataset.

3.2 Fine-Tuned Small Language Models
Ditto. The state-of-the-art matcher Ditto [31] is based on fine-
tuning an encoder language model with a separate prediction
head. To ensure domain specificity, Ditto incorporates domain
knowledge during data serialisation and augments the training
data to enhance the model’s ability to distinguish between
challenging entity pairs. This process includes actions such as
dropping columns and editing spans of tokens.

Although Ditto is not specifically designed for cross-dataset
EM, it does not rely on a hard-coded schema during training,
making it applicable to unseen target datasets with a different
schema.
Unicorn. The unified multi-tasking model named Unicorn [50]
is designed to support seven matching tasks in data integration,
including entity matching. Unicorn applies multi-task learning
by using a mixture of expert architecture [34], aiming to learn
specialised expert models for different tasks. It firstly generates
data samples from different tasks to be serialised with their re-
spective schema and encoded using a pretrained language model.
Then, task-specific expert models transform these representa-
tions into task-specific embeddings. Finally, these embeddings
are merged and fed into a matching module. Through the use of
multi-task experts, Unicorn enables the model to learn distinct
embeddings for different tasks, which allows it to generalise and
perform well on unseen datasets and tasks.

Ditto and Unicorn both leverage encoder-only [44] language
models to encode serialised inputs into representations, and
require a customisation of the model architecture. Despite being

https://github.com/chu-data-lab/zeroer
https://github.com/megagonlabs/ditto
https://github.com/ruc-datalab/Unicorn
https://github.com/Jantory/anymatch
https://huggingface.co/NECOUDBFM/Jellyfish-13B
https://github.com/microsoft/Table-GPT
https://github.com/wbsg-uni-mannheim/MatchGPT

straightforward, this approach introduces complexity to the
matcher design as a careful construction of the prediction head
is required, which subsequently impacts the model’s quality.
Additionally, adapting to new model releases may necessitate
a redesign, as the dimensions of the representations may not
always remain consistent.

In recent years, we have witnessed the success of other
types of transformer-based models, referred as encoder-decoder
and decoder-only models [44]. These models do not require
the extraction of intermediate representations and can directly
generate sequential outputs that are easily interpretable by
humans. Fine-tuning these models is simple, as the model
structure remains intact, and only input-output sequence pairs
need to be prepared.
AnyMatch. The recently proposed AnyMatch [62] serve as a
model-agnostic, data-centric framework to fine-tune encoder-
decoder and decoder-only language models. AnyMatch does not
modify the model structure; instead, it emphasizes generating
high-value fine-tuning data via several data selection techniques
such as boosting to identify difficult examples and offers heuris-
tics to balance the label distribution, and optionally supports
augmenting the fine-tuning data with attribute-level examples.
The cross-dataset EM capability is derived from the model’s con-
textual understanding, enabling it to make predictions to unseen
domain data.

3.3 Instruction-Tuned or Continual-Tuned
Language Models

Another line of research applicable to cross-dataset EM focuses
on enhancing models’ general understanding of tabular contexts
through specific instruction tuning or continued pre-training.
Jellyfish. The general LLM-based approach Jellyfish [60] tar-
gets four data preprocessing tasks (including entity matching).
Jellyfish leverages two LLaMA2-13B models fine-tuned in an
instruction tuning fashion. The corresponding tuning data is
specifically created to accommodate multiple data preprocessing
tasks. Essentially, one LLaMA model is tasked with classification,
providing detailed reasoning, while the second model interprets
this output to refine the reasoning process further. Jellyfish is
explicitly designed to address out-of-domain data preparation
scenarios on unseen datasets, making it well-suited for cross-
dataset EM.
TableGPT. The work on TableGPT [29] enhances LLMs with
a continuous learning setup. This approach utilises diverse
table tasks synthesised from real tables as training corpus, and
continues the pretraining step of the languagemodels on this data,
which improves the tabular understanding. The newly pretrained
model can then be prompted for downstream table-relevant tasks.
TableGPT can adhere to the cross-dataset EM constraints just
like the standard approach of prompting LLMs.

3.4 Prompted Large Language Models
Next, we discuss other model agnostic approaches that rely on
prompting LLMs for EM purpose.
GPT-3. Narayan et al. [37] have pioneered this area by prompt-
ing the large commercial LLM GPT-3 [4] for three data wran-
gling tasks, including entity matching. This work systematically
analyses how different serialisation methods and demonstration
selection can impact the performance of LLMs. Their experi-
mental results showcase that prompting large commercial LLMs

with serialised records can achieve competitive matching per-
formance compared to fine-tuned SLMs. They also report that
prompting with randomly selected demonstrations from the tar-
get dataset can hurt model performance compared to prompting
without demonstrations. The prompting strategy for EM without
demonstrations can be viewed as a natural cross-dataset matcher.
This work also inspires us to evaluate the impact of deliberately
selected demonstrations not from the target dataset, which ex-
emplifies the cross-dataset scenario we are addressing.
MatchGPT. The work on MatchGPT [41] comprehensively ex-
plores the design space of using large language models (LLMs) for
entity matching. Two key perspectives are considered in build-
ing the system: base model selection and prompt design. They
compare the performance of various LLMs, ranging from openly
available models to commercial API-based models, introduce
several prompting formats and evaluate performance variations
across these. They also explore the impact of demonstrations
during prompting and do not adhere to cross-dataset constraints.
Our study differs from these two studies as follows: we focus
on cross-dataset entity matching only, additionally include fine-
tuned SLMs, and not only consider on predictive quality but also
on the inference cost of the model.

4 EVALUATION & ANALYSIS
Next, we present and discuss the experimental results of our study
with respect to both the prediction quality (RQ2, Section 4.1) and
deployment cost (RQ3, Section 4.2).

4.1 Prediction Quality
In our first experiment, we measure the prediction quality of the
above-mentioned entity matching approaches with cross-dataset
capabilities from Section 3.
Data preparation. We experiment on the 11 benchmark datasets
detailed in Section 2.2. Due to the high costs of commercial LLM
APIs, the MatchGPT study down-samples a test set if it exceeds
1,250 samples. We adopt their strategy and include a maximum
of 1,250 randomly chosen samples for all test sets, while ensuring
that the test sets used for evaluation remain identical across all
compared baselines.
Model configurations. We detail the exact configurations for
the matchers outlined in section 3.
Parameter-free baselines. We start from a trivial baseline method
StringSim, which serialises both input tuples to compare by cast-
ing each column to a string and concatenating the values with a
comma separator. This method computes the string similarity of
the serialised tuples via the Ratcliff/Obershelp algorithm from
Python’s difflib package and predicts a match if the corre-
sponding similarity is greater than 0.5. For ZeroER, we leverage
the implementation provided in the REIN benchmark [1]. To
adhere to the cross-dataset restriction 1 from Section 2.1, the
model is exposed only to samples in test partitions. However,
since ZeroER requires knowledge of column types to select ap-
propriate similarity metrics for computation, it partially violates
the cross-dataset restriction 2.
Fine-tuned small language models for entity matching. For
Ditto, we leverage the original code with identical hyperpa-
rameters from the authors’ GitHub repository and configure
the model to use BERT [11] as the base language model.
During the experiment, we apply their “data augmentation”
and “summarisation” strategies but omit the optimisation of

Table 3: Average F1 scores and standard deviations for cross-dataset entity matching (best in bold, second-best underlined,
model seen datasets during training in brackets, and same-domain datasets in same colour). AnyMatch [LLaMA3.2] performs
on par with the trillion-parameter GPT-4, which has three orders of magnitude more parameters.

#params Unseen Target Dataset
(millions) ABT WDC DBAC DBGO FOZA ZOYE AMGO BEER ITAM ROIM WAAM Mean

StringSim - 32.2±0.0 32.5±0.5 73.7±0.6 59.8±0.6 22.5±0.7 45.9±1.7 36.9±0.2 33.6±2.7 50.9±0.7 62.7±0.8 28.0±0.1 43.5±0.1
ZeroER - 37.6±0.0 41.2±0.0 93.7±0.0 59.1±0.0 93.9±0.0 88.2±0.0 23.3±0.0 61.9±0.0 10.8±0.0 79.7±0.0 38.7±0.0 57.1±0.0
Ditto 110 67.8±2.6 43.1±4.1 94.4±0.4 69.7±8.2 92.5±5.0 78.5±13.5 59.4±0.9 89.1±4.7 65.7±7.2 79.1±9.8 62.4±5.9 72.9±2.6
Unicorn 143 87.8±2.0 71.9±1.4 90.6±3.8 86.4±2.8 86.8±8.1 95.2±5.1 64.0±3.5 80.2±3.8 65.8±10.6 90.1±4.4 71.9±0.8 81.0±1.0
AnyMatch [GPT-2] 124 76.5±3.8 60.3±3.5 95.2±0.6 85.7±1.0 96.4±1.1 95.1±4.2 55.9±1.3 91.2±2.5 85.0±5.8 89.3±6.0 66.0±5.6 81.5±1.4
AnyMatch [T5] 220 76.0±4.0 55.4±4.6 96.4±0.5 75.0±6.2 95.4±2.1 95.5±4.1 64.4±3.3 89.2±3.7 79.6±9.1 72.0±11.4 65.5±8.1 78.6±1.8
AnyMatch [LLaMA3.2] 1,300 89.3±0.9 69.4±2.2 96.5±0.5 89.8±1.1 99.6±0.9 98.2±1.9 69.3±2.2 95.3±2.5 82.3±8.8 95.9±1.3 77.2±7.0 87.5±1.0

Jellyfish 13,000 79.2±2.8 73.0±0.6 (97.7±0.6) (93.4±0.6) (97.3±0.9) 99.1±1.2 (72.1±3.3) (90.1±5.6) (51.4±1.6) 97.0±2.4 81.4±3.0 84.7±0.7
MatchGPT [Mixtral-8x7B] 56,000 80.7±5.3 69.5±1.8 92.2±3.3 71.4±3.4 88.6±6.0 91.0±5.0 28.1±2.2 75.9±10.7 53.8±6.4 86.0±4.7 68.8±8.4 73.3±0.9
MatchGPT [SOLAR] 70,000 76.4±0.8 76.6±1.2 93.9±3.1 51.2±5.9 85.4±1.5 97.1±1.0 31.4±0.7 78.8±5.6 67.3±9.2 81.8±5.4 74.6±3.5 74.0±0.7
MatchGPT [Beluga2] 70,000 79.9±1.0 78.6±1.7 91.4±4.4 79.1±2.6 86.5±3.8 96.0±3.1 47.6±3.4 83.5±6.7 55.6±8.0 90.8±2.2 77.1±2.8 78.7±0.7
MatchGPT [GPT-4o-Mini] 8,000 87.2±0.6 88.4±0.4 94.3±1.4 87.4±1.8 90.8±2.8 98.1±1.8 60.7±1.0 67.5±8.7 69.6±9.8 95.7±1.5 82.9±1.2 83.9±1.4
MatchGPT [GPT-3.5-Turbo] 175,000 75.8±3.2 81.9±1.9 82.8±6.4 62.0±10.5 76.0±5.7 86.6±3.5 39.8±2.9 46.6±9.4 38.2±6.6 70.7±6.2 66.0±5.7 66.0±3.4
MatchGPT [GPT-4] 1,760,000 92.4±0.5 89.1±0.4 96.0±1.0 87.9±1.1 95.1±4.1 97.9±4.1 75.0±0.9 82.5±2.1 62.9±7.8 97.2±3.4 85.1±1.3 87.4±0.9

“domain knowledge [...] highlighting important pieces of the
input”, since such knowledge is not available in a cross-dataset
setting. For Unicorn, we leverage the provided source code
and use the instruction version with a DeBERTa [21] base
model that can support cross-dataset entity matching. Since
their implementation includes only five EM datasets, we
modify the code to incorporate all 11 EM datasets for the
“leave-one-dataset-out” configuration. All other hyperparameters
are kept identical to those in the original implementation.

AnyMatch already complies with the ’leave-one-dataset-out’
configuration for its two base models GPT-2 [42] and T5 [43],
so we only need to re-run the experiments with different
random seeds and serialization strategies. To fully explore the
performance boundaries of fine-tuning SLMs, we introduce an
additional variant — based on a LLaMA3.2model1 with 1.3 billion
parameters, which slightly exceeds the threshold we set for
categorising PLMs. We adjust the learning rate to 1𝑒−6 while
keeping all other hyperparameters unchanged. Additionally, we
do not apply the AutoML boosting and data augmentation with
weakly-labelled attribute pairs for this variant, but retain the
label balancing operation to ensure that both matching and non-
matching pairs are adequately represented in the training data.
Instruction-Tuned or Continual-Tuned Language Models. For
Jellyfish, we leverage the publicly available pretrained
13 billion parameter model and prompt format provided by
the authors. Unfortunately, the authors used six out of the
eleven benchmark datasets during the multi-task training of
their model. As a consequence, we cannot fairly evaluate the
model in a cross-dataset setting on this data, since it has already
seen training data for these tasks. We still report the resulting
numbers for completeness, but put them in brackets to indicate
that they do not originate from a cross-dataset setup. The
original work on TableGPT [29] reports numbers for seven
of our included datasets in their zero-shot setting, where the
task (entity matching) has been seen during training, but no
labelled pairs from the target data were observed. However,
since TableGPT is proprietary and not accessible to the academic
community, we are unable to evaluate their model under our
experimental configuration.
Prompted large language models. Similarly, for the study by
Narayan et al. [37], we are unable to conduct the experiments as
the GPT-3model has been deprecated. Therefore, we provide their

1https://huggingface.co/meta-llama/Llama-3.2-1B

numbers only as supplementary material in our code repository
for reference. For MatchGPT, we leverage prompting without
demonstration examples based on the general-complex-force
prompt format from [41], which showed the best performance
without domain-specific information in the cited study. We
evaluate the three variants Mixtral, SOLAR and Beluga2 which
are based a set of large open-weight models ranging from 56
billion to 70 billion parameters. Furthermore, we include the
latest variants GPT-3.5-Turbo, GPT-4, and GPT-4o-Mini, to
ensure up-to-date comparisons. These models are accessed via
the commercial API from OpenAI, with parameter sizes assumed
to be 175 billion for GPT-3.5-Turbo, 1.76 trillion (8x220B) [53]
for GPT-4 and 8 billion for GPT-4o-Mini.
Results and discussion. We list the resulting mean F1 scores
and their standard deviation for the 11 datasets in Table 3.
The best score per dataset is indicated in bold, while the
second-best score is underlined. The six scores for Jellyfish
is in brackets to indicate that it was pretrained on this data,
which violates the cross-dataset setting. We additionally plot
the prediction quality versus the model size (in terms of the
number of parameters) in Figure 4. Overall, fine-tuned SLMs
have higher variance than LLMs, which we attribute to the larger
parameter size providing greater robustness for such prediction
tasks. Notably, AnyMatch [LLaMA3.2] achieves the best results,
showing predictive quality on par with MatchGPT [GPT-4] —
with an average F1 score of 87.5 compared to 87.4 — while
using three orders of magnitude fewer parameters. We also
observe a strong performance from MatchGPT [GPT-4o-mini],
whose score is less than 1% lower than the score of Jellyfish,
despite the latter being instruction-tuned with nearly double
the parameter size. Additionally, other fine-tuned SLMs, such as
AnyMatch [GPT-2], AnyMatch [T5], and Unicorn, performwell,
scoring around 80%, surpassing the performance of prompting
all three open-source LLMs.
In the following, we present six key findings from this experi-
ment.
Finding 1 – Parameter-free matchers are only competitive with
fine-tuned small language models and prompted open language
models on specific datasets. As expected, the StringSim baseline
yields the lowest F1 score of just 43.5. Notably, while still lagging
behind the top-performingmethods, the parameter-free approach
ZeroER proves competitive on the DBAC and FOZA datasets, which
are relatively well-structured. However, it underperforms on
several datasets with more free-text content, such as ABT, WDC,

AMGO, ITAM, and WAAM. We attribute this to the lengthy and
unconventional product descriptions in these datasets, which
introduce substantial complexity and are not effectively captured
by the similarity differences between matched and mismatched
record groups. Nevertheless, the strong performance on specific
datasets still suggests potential for developing hybrid methods
that combine efficient, parameter-free matchers with other
techniques.
Finding 2 – Model-agnostic matchers generally perform better than
model-aware matchers. When considering small fine-tuned mod-
els, it becomes evident that a model-agnostic approach is more
suitable for cross-dataset entity matching (EM) than a model-
aware approach. The over 8-point higher performance of Uni-
corn compared to Ditto demonstrates the importance of design-
ing a prediction head based on representations extracted from
PLMs to achieve high-quality predictions. However, despite Uni-
corn having a relatively complex model trained on extensive
data from EM tasks and other tasks (with over 1 million samples),
it still falls short when compared to the smaller AnyMatch [GPT-
2] and performs only 2.4% better than AnyMatch [T5]. The
comparison becomes more complicated when comparing model-
aware solutions against model-agnostic and prompt-based meth-
ods. While Unicorn outperforms MatchGPT [Mixtral-8x7B],
MatchGPT [SOLAR], MatchGPT [Beluga2], and MatchGPT [GPT-
3.5-Turbo], it still underperforms compared to MatchGPT [GPT-
4o-mini] and MatchGPT [GPT-4]. This suggests that a perfor-
mance gap remains when prompting advanced large models with
a fine-tuned, model-aware matcher, even one designed specifi-
cally to support cross-dataset EM.
Finding 3 – Fine-tuned small language models can achieve on-par
or even better performance than prompted large language models.
Fine-tuning SLMs results in reasonable performance, which in
all cases reaches at least the quality level of prompting open
models like Mixtral. Even with the smallest fine-tuned model,
Ditto, we observe on-par performance to Mixtral and SOLAR.
Approaches with a complex model design, such as Unicorn,
outperform all open-source LLMs and MatchGPT [GPT-3.5-
Turbo] with a large margin, despite the fact that these models
have at least two orders of magnitude more parameters. When a
model-agnostic matcher is fine-tuned, we observe even stronger
results. AnyMatch [LLaMA3.2]with 1.3 billion parameters results
in the best performance of 87.5, and slightly surpasses the trillion-
parameter model MatchGPT [GPT-4], which gives a score of 87.4.
However, MatchGPT [GPT-4] achieves 5 out of the 11 best results,
while AnyMatch [LLaMA3.2] secures only two best results and
five second-best results. The high performance of fine-tuned
SLMs (Figure 4) also gives rise to a potentially very cost-effective
deployment of high-quality cross-dataset matchers, since the
model size typically dictates the GPU requirements, which are
the the main cost factor. We explore this relationship further in
Section 4.2
Finding 4 – The commercial GPT series models are well-suited
to handling input expressed in domain-specific language.
MatchGPT [GPT-4o-Mini] demonstrates decent performance
across all datasets, despite having only 8 billion parameters and
not being fine-tuned. Its direct competitors AnyMatch [GPT-
2] and Unicorn both show similar performance with an
around 81 F1 score. An observation on these methods is that
MatchGPT [GPT-4o-Mini] consistently and greatly outperforms
them on the WDC and WAAM datasets by more than 10 points. This
trend also holds in the comparison between MatchGPT [GPT-4]

and AnyMatch [LLaMA3.2]. We assume this performance
difference caused by the fact that such datasets uses very domain
specific language, which is often not grammatically consistent.
For example, AnyMatch [GPT-2] misclassifies the product pairs
{title: "sumdex slr camera sling pack", category:
"mp3 accessories", brand: "sumdex"} and {title: "slr
camera sling pack", category: "cases bags", brand:
"sumdex"} from AMGO dataset, while MatchGPT [GPT-4o-Mini]
correctly matches them.

We attribute this to the LLM’s exposure to a more complex
and enriched pretraining corpus, which makes it likely to have
encountered such textual patterns. In contrast, the smaller model
may lack exposure to these sequences and must rely on further
fine-tuning, which is constrained by the perplexity of provided
training datasets. Another unknown factor in these results is
whether the commercial models have encountered the public
benchmark datasets during their pretraining. However, this
remains impossible to determine, as the training data for these
models is not disclosed.
Finding 5 – Overlapping domain datasets have negligible impact in
cross-dataset configurations. As shown in Table 3, six datasets
share the same domain with at least one other dataset. In
our leave-one-dataset-out fine-tuning configurations, when one
of these datasets is left out, the training set still includes
data samples from the same domain. Intuitively, one might
hypothesize that the presence of same-domain data in the training
set positively influences predictions for the target dataset. We
test for this hypothesis that overlapping domain datasets lead to
higher performance, by conducting a two sample t-test between
the F1 scores for datasets that share a domain and those that
do not. Note that we normalize the F1 scores by subtracting the
mean F1 score of a LLM (we use MatchGPT [GPT-3.5-Turbo]),
to put all the scores on the same scale. The t-test results in a
rejection of the hypothesis, indicating that overlapping domains
do not significantly improve performance.

The capability of a LM is determined by two factors: its un-
derstanding of general linguistic context and its understanding
of downstream tasks. Since the fine-tuning step primarily con-
tributes to the model’s task-specific understanding, we can infer
that the fine-tuned models involved in experiments have ac-
quired a general understanding of the EM task from the prepared
high-perplexity datasets. This understanding can subsequently be
transferred across datasets. Therefore, as long as the textual pat-
terns are not significantly different, even if an upcoming dataset
is from an unseen domain, the model can still provide accurate
responses.
Finding 6 – Both fine-tuned small language models and prompted
large language models exhibit insensitivity to skewed datasets.
The evaluation in this work includes datasets with varying label
distributions, as can be seen from Table 1. We compute the
Spearman rank correlation between the predictive quality and
label imbalance rate. For all LM baselines, the correlation is
approximately 0.15, and never exceeds 0.3, indicating a weak
monotonic relationship between the two variables. This result
demonstrates that all LMs perform similarly across both major
and minor groups, highlighting their insensitivity to skew. From
a broader perspective, the correlation for SLMs is slightly smaller
than that for LLMs (0.15 vs. 0.18). This can be attributed to the
fine-tuning of SLMs with diverse datasets, which enhances their
robustness.

Table 4: Average F1 scores for cross-dataset entity matching using different demonstration strategies (best scores in bold
per model specification). The model performance is often negatively impacted by demonstrations, except for GPT-4.

#params Unseen Target Dataset
Model Demonstrations (millions) ABT WDC DBAC DBGO FOZA ZOYE AMGO BEER ITAM ROIM WAAM Mean

GPT-4o-mini none 8,000 87.2±0.6 88.4±0.4 94.3±1.4 87.4±1.8 90.8±2.8 98.1±1.8 60.7±1.0 67.5±8.7 69.6±9.8 95.7±1.5 82.9±1.2 83.9±1.4
GPT-4o-mini hand-picked 8,000 83.6±2.4 86.7±0.8 93.9±3.6 84.7±2.3 89.8±3.6 95.6±2.5 66.3±1.9 60.9±7.9 69.3±8.8 94.9±2.2 82.6±1.3 82.6±0.5
GPT-4o-mini random-selected 8,000 86.6±1.9 88.0±0.9 93.7±2.8 87.7±1.5 90.4±1.7 96.6±1.3 66.6±1.8 67.1±3.0 68.3±5.6 95.4±1.3 81.7±1.6 83.8±0.6
GPT-3.5-Turbo none 175,000 75.8±3.2 81.9±1.9 82.8±6.4 62.0±10.5 76.0±5.7 86.6±3.5 39.8±2.9 46.6±9.4 38.2±6.6 70.7±6.2 66.0±5.7 66.0±3.4
GPT-3.5-Turbo hand-picked 175,000 59.6±10.1 73.9±1.8 79.3±1.9 55.9±7.4 69.5±10.7 74.0±4.9 38.9±9.0 44.5±3.4 34.2±7.2 57.1±3.3 60.2±10.6 58.8±2.8
GPT-3.5-Turbo random-selected 175,000 75.7±3.7 78.9±3.0 82.3±2.6 65.5±6.8 69.8±10.9 84.2±5.9 52.1±5.5 55.9±2.9 38.4±5.9 69.9±4.5 65.1±3.6 67.1±1.4

GPT-4 none 1,760,000 92.4±0.5 89.1±0.4 96.0±1.0 87.9±1.1 95.1±4.1 97.9±4.1 75.0±0.9 82.5±2.1 62.9±7.8 97.2±3.4 85.1±1.3 87.4±0.9
GPT-4 hand-picked 1,760,000 91.3±1.2 87.3±1.0 96.9±1.5 89.2±1.3 95.7±3.0 97.7±2.8 75.1±1.9 80.6±4.6 72.3±6.2 99.5±1.0 85.6±0.6 88.3±0.4
GPT-4 random-selected 1,760,000 90.4±0.6 87.9±0.9 96.3±0.5 88.6±0.8 95.7±3.0 97.3±2.6 75.3±1.0 85.1±1.8 73.2±3.0 99.2±1.0 83.2±1.7 88.4±0.5

4.1.1 Benefit of additional demonstrations for prompted LLMs.
In our cross-dataset EM setup, prompted LLMs can still be
potentially impacted with demonstrations from the transfer data.
This consideration is missing in the study on MatchGPT [41]. In
order to make sure that our results are not impacted by this gap,
we conduct an additional experiment to explore the benefits of
providing demonstrations to prompted LLMs.
Experimental setup. We compare three different variants
for including demonstrations in MatchGPT. The first variant
mirrors the setting used in the previous experiment and does
not include any demonstration examples. The second variant
utilises three (two non-matching and one matching) manually
selected examples from the available transfer learning datasets
in its prompt. The third variant contains three randomly selected
examples from the available transfer learning datasets to generate
prompts. We evaluate MatchGPT with three LLMs: GPT-4o-mini,
GPT-3.5-Turbo, and GPT-4.
Results and discussion. Firstly, for the GPT-4o-Mini and GPT-
3.5-Turbo models, prompting with demonstrations in cross-
dataset EM scenarios tends to degrade model performance in
most cases, regardless of the demonstration strategy. Specifically,
prompting without demonstrations achieves the highest scores in
10 out of 11 datasets for GPT-4o-Mini and in 7 out of 11 datasets
for GPT-3.5-Turbo. At a first glance, these findings may seem
counterintuitive and appear to contradict the results of [37],
which demonstrated that manually selected demonstrations
by experts can improve model performance of GPT-3, while
randomly selected demonstrations introduce greater sensitivity
to the model. Actually, these findings effectively complement the
original conclusion. In Narayan’s study, the demonstrations for
each test sample were drawn from the same dataset, whereas
our cross-dataset setting required the selected demonstrations to
come from out-of-distribution datasets. Consequently, for models
like GPT-3.5 and GPT-4o-Mini, providing demonstrations can
confuse the model due to the out-of-distribution cases in the
context, leading to worse performance. As for the more advanced
model GPT-4, demonstrations can lead to subtle performance
improvements. This suggests that this model possesses more
general knowledge of the EM task and can effectively learn from
context examples even when they come from different datasets.
Lastly, randomly selected demonstrations are generally more
helpful to the model compared to manually selected ones. We
attribute this to the fact that manually selected demonstrations
are few in number and closely tied to specific datasets, making
them less effective at form a helpful context for the current test
sample in cross-dataset scenarios. Consequently, the random
selection strategy tends to outperform the manual selection
strategy.

4.2 Inference Throughput & Deployment Cost
The goal of the following two experiments is to assess the
trade-off between the deployment cost and prediction quality
of the cross-dataset EM approaches under consideration. The
ability to deploy cross-dataset EM models in a cost-efficient and
scalable way is especially important for the use cases discussed
in Section 2.1, such as data integration services in the cloud
or deduplication as a data cleaning step in machine learning
pipelines [30, 57].

We focus on throughput as a measure of computational
performance, as the input for entity matching are typically large
candidate sets of potentially matching pairs, which have to
be processed in batch. Since we focus on EM with language
models, we adopt the common metric of tokens per second [3].
Unfortunately, we cannot properly evaluate the throughput of
commercial models like GPT-4 since they are only accessible via
proprietary APIs. It is unknown with which hardware they are
run, and they are most likely also deployed for multi-tenancy,
which makes performance evaluation even more difficult.

Therefore, we adopt the following methodology for our per-
formance experiments: We measure and compare the through-
put (in terms of tokens per second on a given hardware setup)
of the matchers which leverage publicly available open-weight
models (Section 4.2.1). Subsequently, we compare inference with
the open-weight models to inference with proprietary model
APIs in terms of cost rather than throughput. A common met-
ric is the dollar price per 1,000 tokens, which is available for
commercial models from OpenAI. We estimate this cost for Any-
Match, Ditto, Unicorn, Jellyfish, MatchGPT and their respec-
tive open-weight models based on the observed throughput num-
bers and the hourly cost of an appropriate cloud instance in the
Amazon Web Services Cloud (Section 4.2.2).

4.2.1 Inference Throughput. The goal of our first experiment
is to measure the inference throughput in terms of tokens
per second of AnyMatch with three variants, Ditto, Unicorn,
the LLM-based methods Jellyfish (which uses the LLaMA2-
13B model [49]) and MatchGPT with three open-weight models
(Mixtral-8x7B, SOLAR, Beluga2).
Experimental setup. We deploy each matcher (in combination
with a given model) with exclusive access to a machine with four
A100 GPUswith 40 GBGPURAM in a large academic HPC cluster.
Note that the A100 GPU is a common choice for ML, is the most
powerful hardware available to us in academic context, and also
constitutes a common choice in cloud instances designed for ML
workloads. We leverage implementations based on PyTorch and
the transformers library. We deploy quantised (16-bit precision)
versions of the models and use model parallelism to distribute a
model over multiple GPUs if it cannot fit into the 40 GB memory

of a single A100 GPU. We leverage the DBGO dataset here, since it
is the largest dataset from our evaluation and proceed as follows.
We first determine the maximum batch size usable per model
by testing exponentially growing batch sizes and checking for
memory issues. Next, we measure the inference time for 100
batches (based on the determined maximum batch size) via the
torch.utils.benchmark package from PyTorch and compute
the throughput in tokens/s based on the observed inference
times. If a method does not use all four GPUs, we extrapolate its
throughput to the full machine based on the number of GPUs
used, as our inference is embarrassingly parallel.
Results and discussion. We list the required memory per model,
the corresponding maximum usable batch size and the achieved
throughput in Table 5. The models used by Ditto, AnyMatch,
Unicorn, and Jellyfish can fit into the 40 GB memory of a
single A100 GPU. Mixtral-8x7B requires model parallelism with
two such GPUs, while SOLAR and Beluga2 need to be distributed
over all four A100 GPUs. The differences in size and the required
model parallelism result in vast differences in the maximum
achievable batch size and throughput.

Impressively, Ditto has the highest throughput across all
included method, of 862,001 tokens per second, which is is 1,146
and 798 times larger than that of the open-sourced large language
models SOLAR and Beluga2, respectively. When excluding the
Jellyfish method, we can notice that the throughput of all fine-
tuned small language models exceeds two orders of magnitude
compared to that of the larger language models. This can be
attributed to several factors. Firstly, the memory requirements are
significant, as larger models like Mixtral-8x7B, Beluga2, and
SOLAR cannot fit into a single A100 GPU, necessitating the use of
model parallelism across multiple GPUs. This setup can hinder
throughput because the model activations must be copied to the
memory of the other GPUs. Secondly, the maximum batch size
that can be accommodated is another constraint on throughput.
Typically, a smaller parameter size allows for a higher batch size
within the same memory configuration.

Models like Ditto, AnyMatch [GPT-2], and AnyMatch [T5]
can accommodate 8,192 examples in a single batch, which is
two orders of magnitude larger than that of larger language
models like Mixtral-8x7B, Beluga, and SOLAR, which can only
handle between 32 and 64 examples. Interestingly, the structural
design of themodel also influences its maximum accommodatable
batch size and, consequently, the throughput. For instance,
Unicorn employs a mixture of expert design, which has a similar
number of parameters compared to Ditto and AnyMatch [GPT-
2]. However, its batch size is only half that of the former two

Table 5: Throughput in tokens/s with 4xA100 (40GB) GPUs
fo open-weight LLMs employed by various EM approaches.

Model Used by #params RAM batch Throughput
(millions) (GB) size (tokens/s)

BERT Ditto 110 0.21 8,192 862,001
GPT-2 AnyMatch 124 0.26 8,192 693,999
DeBERTa Unicorn 143 0.27 4,096 216,396
T5 AnyMatch 220 0.54 8,192 530,656
LLaMA3.2 AnyMatch 1,300 2.30 4,096 264,952

LLaMA2-13B Jellyfish 13,000 24.46 128 26,721
Mixtral-8x7B MatchGPT 56,000 73.73 32 2,108
Beluga2 MatchGPT 70,000 128.64 32 1,079
SOLAR MatchGPT 70,000 128.64 64 752

methods, resulting in a throughput that is only one-fourth to one-
third of theirs. A similar situation is observed between Mixtral-
8x7B and Beluga2.

4.2.2 Inference Cost. The goal of the last discussion is to com-
pare fine-tuned small language models against entity matching
with approaches like MatchGPT that use commercial models from
OpenAI. As discussed, we cannot reliably measure the through-
put for these models since they are deployed behind proprietary
APIs on unknown hardware. As a consequence, we compare the
dollar cost of inference with these models to the dollar cost of
inference with Ditto, AnyMatch, Unicorn, and MatchGPT with
the open-weight models Mixtral-8x7B, SOLAR and Beluga2.

Table 6: Cost per 1K tokens for EMwith proprietarymodels,
compared to a deployment scenario with open-weight
models on a p4d.24xlarge instance in the AWS cloud or via
the together.ai platform.

Cost for
Method & model 1K tokens Deployment scenario

MatchGPT [GPT-4] $0.015 OpenAI Batch API
MatchGPT [SOLAR] $0.0009 Hosting on Together.ai
MatchGPT [Beluga2] $0.0009 Hosting on Together.ai
MatchGPT [GPT-3.5-Turbo] $0.00075 OpenAI Batch API
MatchGPT [Mixtral-8x7B] $0.00063 4x on p4d.24xlarge
MatchGPT [GPT-4o-Mini] $0.000075 OpenAI Batch API
Jellyfish $0.000025 8x on p4d.24xlarge

Unicorn[DeBERTa] $0.000012 8x on p4d.24xlarge
AnyMatch[LLaMA3.2] $0.000010 8x on p4d.24xlarge
AnyMatch[T5] $0.0000050 8x on p4d.24xlarge
AnyMatch[GPT-2] $0.0000038 8x on p4d.24xlarge
Ditto[Bert] $0.0000031 8x on p4d.24xlarge

Note that we cannot include GPT-3 and TableGPT in this dis-
cussion since we could not estimate its cost due to the depreca-
tion of the used models. We also do not include Jellyfish in
this discussion, since we cannot reliably compute its average F1
score, as it has seen several of the evaluation datasets at training
time, which violates our cross-dataset setting (as discussed in
Section 4.1).
Setup. We lookup the costs for the commercial models from
OpenAI at https://openai.com/api/pricing/. As of December 2024,
batch inference with the GPT-4 model costs $0.015 per 1,000
tokens and inference with GPT-3.5-Turbo-0125 costs $0.00075
per 1,000 tokens. Note that these models have different costs for
input and output tokens; we use the cheaper input token cost,
since entity matching is modelled as sequence classification task,

$0.00001 $0.0001 $0.001 $0.01 $0.1
Costs in dollars per 1K tokens (log scale)

60

70

80

A
ve

ra
ge

F
1

sc
or

e

Ditto

Unicorn

AnyMatch[GPT-2]

AnyMatch[T5]

AnyMatch[LLaMA3.2]

MatchGPT[Mixtral]

MatchGPT[Solar]

MatchGPT[Beluga]

MatchGPT[GPT-4o-Mini]

MatchGPT[GPT-3.5-Turbo]

MatchGPT[GPT-4]

Figure 3: Deployment cost versus prediction quality.

https://openai.com/api/pricing/

which only generates output with a single word. We estimate the
cost for fine-tuned small language models and the open-weight
models as follows. We assume that such a model is deployed on a
cloud instance that is constantly used for inference (e.g., as part
of the use cases described in Section 2.1). We use the cost for a
p4d.24xlarge instance2 from the Amazon Web Services cloud
as a reference. This machine is designed for ML workloads and
comes with eight A100 (40GB) GPUs (exactly twice the amount
of GPUs which we used for our throughput experiment). As of
December 2024, such a machine has an hourly cost of $19.22
in a scenario where the instance is reserved for a year (which
would be common in a corporate setup). Since the cloud instance
has the exact same type of GPU (only twice the amount), we
can extrapolate our throughput numbers from Section 4.2.1 to
this machine by simply doubling them, as inference in entity
matching is an embarrassingly parallel workload. We therefore
estimate the cost per 1,000 tokens for models deployed on this
machine as (𝑝/(2 ·𝑡𝑚 ·3600)) ·1000where 𝑝 is the hourly instance
price, 𝑡𝑚 is the throughput in tokens/s observed for model 𝑚
and 2 is the extrapolation factor from our previous experiments
(as the cloud instance has twice the amount of GPUs). For the
open-weight models, we additionally lookup the hosting price
on the cloud platform together.ai3 and choose this option if
the resulting price per 1,000 tokens would be lower than our
self-hosting setup (e.g., because a more favourable GPU can be
chosen).
Results and discussion. We list the resulting costs per method
and model in descending order in Table 6 . For each entry, we also
mention the chosen cheapest deployment scenario, e.g. whether
we assume that the OpenAI API is used, whether we assume that
the model is hosted on together.ai, or whether we assume that
the model is deployed x-times on a p4d.24xlarge instance in
AWS.

As observed, the lowest cost is provided by Ditto [Bert],
which is 4,838 times cheaper than the most expensive solution,
MatchGPT [GPT-4]. AnyMatch [GPT-2] ranks second in terms of
cost-efficiency. The Unicornmethod and AnyMatch [LLaMA3.2]
have similar costs, both being three times more expensive than
Ditto. While all fine-tuned small language models exhibit low
inference costs, there are also cost-effective solutions within
the large language model (LLM) category. Notably, Jellyfish
and MatchGPT [GPT-4o-Mini] maintain a cost comparable to
Unicorn, being an order of magnitude cheaper than most other
LLMs except MatchGPT [GPT-4]. In fact, their costs are two
orders of magnitude lower compared to MatchGPT [GPT-4].
Trade-off between deployment cost and prediction qual-
ity. Given the distinct cost and quality variance among different
matchers, we seek to find a trade-off between these two dimen-
sions. This balance is crucial for designing cost-efficient and
scalable EM approaches, e.g. for a data integration service in the
cloud. For that. we plot the average F1 score achieved versus the
estimated cost for 1,000 tokens from the analysis in Figure 3.

The method with the highest performance and lowest cost
should ideally appear in the top-left corner of Figure 1. However,
as observed, no single method excels in both dimensions. Among
the evaluated approaches, AnyMatch [LLaMA3.2] strikes the
best balance. For systems with a budget of less than $0.00005
per 1K tokens, all AnyMatch models and Unicorn are viable
options. When the budget increases to $0.000075 per 1K tokens,

2https://aws.amazon.com/ec2/instance-types/p4/
3Available at https://www.together.ai/pricing, accessed in December 2024

100M 1B 10B 100B 1T

Number of model parameters (log scale)

65

70

75

80

85

90

A
ve

ra
ge

F
1

sc
or

e

Ditto

Unicorn
AnyMatch[GPT-2]

AnyMatch[T5]

AnyMatch[LLaMA3.2]

MatchGPT[Mixtral]
MatchGPT[Solar]

MatchGPT[Beluga]

MatchGPT[GPT-4o-Mini]

MatchGPT[GPT-3.5-Turbo]

MatchGPT[GPT-4]

Figure 4: Model size versus prediction quality. Fine-tuned
small models perform on par with prompted LLMs.

the selection can expand to include MatchGPT [GPT-4o-Mini].
This choice offers more stable and higher performance, especially
for inputs with highly specific or unconventional language
expressions, as discussed in Finding 4.

5 LESSONS & DISCUSSION
We discuss several insights and limitations from our study.
Data-centric approaches outperformmodel-centric ones. A
significant finding from this study is that data preparation tends
to have a greater impact on predictive quality than model design,
as shown in Section 4.1. This insight is derived by the results
from models like AnyMatch, and fine-tuned approaches such as
Ditto and Unicorn. Notably, when the model parameter size is
comparable, AnyMatch achieves an on par performance score of
81.5 compared to the more intricately designed model Unicorn,
which scores 81.0. When these data-centric strategies are applied
to larger models for fine-tuning, the performance can improve
even further, as demonstrated by the best solution achieving
an F1 score of 87.5. This insight aligns with the paradigm shift
from optimising model structure to focusing on preparing more
informative training corpora for language models [25, 42].
Fine-tuned small models perform on par with prompted
large models. Another key takeaway stem from the comparison
between fine-tuning smaller LMs and prompting large models,
like the GPT series, for cross-dataset EM. The simplest approach,
Ditto, achieves an F1 score of 72.9, on par with most prompted
large models, except GPT-4 and GPT-4o-Mini, which score 87.4
and 83.9, respectively. Fine-tuning a 124-million-parameter GPT-
2 model yields an F1 score of 81.5, not far away from GPT-
4o-Mini, while fine-tuning the 1.3-billion-parameter LLaMA3.2
model can outperform or achieve comparable performance to all
prompted large models. Moreover, fine-tuning smaller models
offers distinct cost advantages at least two orders of magnitude
for deployment. This becomes particularly important when
considering the prohibitive costs associated with large numbers
of API calls to models like GPT-4 in industry settings. Fine-tuning
smaller models thus presents a more scalable and cost-efficient
solution for tasks like cross-dataset EM, without compromising
on performance. A future direction for this research could involve
testing whether fine-tuning SLMs continues to outperform
prompted LLMs in other table-relevant tasks.
Lack of Impact of Demonstrations. When comparing prompt-
ing techniques, we find that prompting without demonstrations
yields better performance in most cross-dataset scenarios with

https://aws.amazon.com/ec2/instance-types/p4/
https://www.together.ai/pricing

GPT-4o-Mini and GPT-3.5-Turbo. For example, prompting GPT-
4o-Mini without demonstrations achieves the best scores in 9
out of 11 datasets across different prompting methods. For the
more advanced model GPT-4, the impact of demonstrations is
subtle.

Interestingly, prompting with randomly demonstrations out-
perform manually chosen ones. This finding appears to contra-
dict the claim made by [37], which suggests that prompting with
hand-picked examples from the same dataset as the target data
improves model performance, while randomly selected examples
lead to increased sensitivity and decreased quality. In fact, our
experimental results can be viewed as complementary to their
conclusion in a cross-dataset setting. In our case, demonstration
examples were sourced from datasets different from the target
data, making the situation more analogous to the random case de-
scribed. Such out-of-distribution demonstrationsmay confuse the
model, leading to less accurate predictions, particularly for less
capable models. Additionally, as manually selected examples are
closely tied to specific datasets, they are less effective at forming
a helpful context for predicting target samples, which explains
why they generally perform worse than random selections.
Recommendation for practitioners. For practitioners aiming
to develop a scalable cloud service for EM, we recommend using
AnyMatch [LLaMA3.2] when sufficient transfer data is available.
This configuration strikes an excellent balance between perfor-
mance and cost-efficiency. Furthermore, it allows the control
over the underlying model—a critical advantage, considering
the frequent deprecation of commercial models. In scenarios
where transfer data is limited or unavailable, MatchGPT [GPT-
4o-Mini] serves as a strong alternative, delivering robust perfor-
mance across various datasets. Although it may incur a higher
cost (seven times greater at $0.075 compared to $0.01 per mil-
lion tokens), its capability to effectively handle domain-specific
language makes it a valuable option for applications requiring
enhanced accuracy and stability.

5.1 Limitations and Future Work
We discuss a set of limitations of our study and outline directions
for future work.
Potential data leakage issues. As we aim to evaluate the cross-
dataset capability of various LLM-based methods, it is crucial to
discuss potential data leakage issues that may arise during the
pretraining phase of LMs. Given that most LMs are trained on a
vast corpus of web data, there is a risk that this data may overlap
with the datasets on which we are evaluating. Unfortunately,
the training data used for the GPT series models, including the
open-weight model GPT-2, is not publicly available. As a result,
the academic community cannot verify whether there are any
data leakage issues when working with these models.

The training corpora of some open-weight models training
corpus are available, allowing us to validate if a dataset was
in included in their training corpus. We are only able to run
such an analysis for T5 [43]-one of the base models applied by
AnyMatch. T5 is pretrained on the C4 dataset, a cleaned version of
the CommonCrawlweb corpus.We download the ’C4/en’ version
(350 GiB) from HuggingFace4 and conduct a sanity check. Each
data sample in this dataset includes a URL field that specifies
the source of the textual data. We thoroughly examined whether
the source repositories of our datasets are included in this field.

4https://huggingface.co/datasets/allenai/c4

Based on our comparison, we found no evidence that the EM data
were used during the pretraining of T5. Moreover, we conducted
a separate analysis on dataset pairs by looking at the result size
of natural joins between them to ensure there is no overlap. This
analysis confirmed that there is zero tuple overlap between every
pair of datasets.
Task-specific data required for fine-tuning. Another limi-
tation is that, while fine-tuning smaller models appears cost-
effective, it requires access to task-specific data for fine-tuning,
whichmay not always be easy to collect for practical cross-dataset
applications. A future direction of research is to investigate if
other matching-relevant data such as samples for schema match-
ing, column alignment, etc. (as mentioned in [50]) can help if
task-specific data is missing.
Lack of comparison with RAG approaches. Another future
direction for cross-dataset EM is Retrieval-Augmented Genera-
tion (RAG). RAG methods, which enhance language models by
retrieving relevant information from external knowledge bases,
could provide additional performance improvements, particularly
in scenarios requiring high precision. While our work focuses
on fine-tuning and prompting, future studies should investigate
whether integrating RAG would improve the effectiveness of
prompting with demonstrations in our cross-dataset EM task.
Lack of real-world applicability. As real-world EM datasets
are typically costly to obtain, our work is limited to evaluations on
openly available benchmark datasets. While the 11 datasets used
in this study include noisy data, such as unformatted or missing
values, they may not fully capture the complexities of real-world
applications. Extending this line of research to investigate how
existing EM methods perform in real-world scenarios would be
a valuable and intriguing direction for future work.

6 RELATEDWORK
Entity matching is a well-studied problem with several surveys
and benchmarks. To the best of our knowledge, no existing
benchmark covers large language models and their cost in a
cross-dataset setting however.
Benchmarks and Studies on Entity Matching. An extensive
analysis of EM on real-world datasets has been presented by [26]
already more than a decade ago, while more recent studies [9, 36]
focuses on the potential of deep learning model for the entity
matching problem. However, the cross-dataset setting is not
considered. A crucial part of real-world EM systems are blocking
and filtering techniques to reduce the number of candidate pairs
to match [8, 20, 39]. We focus on the subsequent matching
methods, which can be combined with any blocking or filtering
technique. [35] study an active learning setting for EM where a
small number of labelled examples can be dynamically collected,
which in contrast to our setting, requires the active involvement
of human labellers. [12] present a systems vision for end-to-end
matching solutions that cover the whole matching pipeline and
assist users in selecting methods for individual steps.

A recent study [47] on the fairness of entity matchers uncov-
ered problems in light of the coverage of certain demographic
groups or with the similarity characteristics of certain names. The
REIN [1] and CleanML [30] benchmarks investigate the impact of
data errors and cleaning techniques (including entity matching
in the form of deduplication) on the downstream performance of
ML models. Furthermore, there are several critical assessments of
the difficulty of the entity matching task [27, 36, 38]. We interpret

their finding that many EM datasets are easy to match as evidence
for the potential of cross-dataset matchers and they feasibility of
EM systems that require minimal human intervention.
Approaches without Cross-Dataset Capabilities. In addition
to the EM solutions detailed in Section 3, we discuss a set of
methods for entity matching, which are not able to adapt to the
cross-dataset setting on unseen data, since their feature encoding
depends on the schema of the target data to match. Magellan [12]
focuses on building an end-to-end system for entity matching,
based on classical machine learning methods. GNEM [7] employs
a graph neural network approach to entity matching, where each
node represents an entity pair and encodes semantic information
and interactions. HierMatch [17] introduces a novel approach
to entity matching by constructing a hierarchical structure that
progresses from the token level to the attribute level, and finally
to the entity level. DeepMatcher [56] is a transformer-based
neural network for entity matching with various components to
improve classification performance across three distinct types
of input: structured, text, and dirty data. MCAN [59] extends
the DeepMatcher model with an attention mechanism after the
attribute matching phase. Themethods proposed in [19, 24] adopt
an active learning strategy to manually identify informative
samples for model training, that improve matching performance
when labelled.

7 CONCLUSION
We presented the first comprehensive and systematic study on
cross-dataset entity matching with large and small language
models, where we evaluated 14 matchers on 11 benchmark
datasets. With respect to prediction quality, we found that
fine-tuned small models can perform comparable to prompted
large models and that data-centric approaches outperform
model-centric approaches. Furthermore, our analysis of the
deployment cost indicated that well-performing small models
can be deployed at an orders of magnitude lower cost than
comparably performing approaches with large commercial
models.

Reproducibility. We have released all datasets, code, and
models necessary to reproduce the results in this work at https:
//github.com/Jantory/cross-dataset-em-study. The fine-tuning
process for the small language models is based on the original
implementation, as detailed in Table 2. For all the small language
models we fine-tuned, we provide both the adjusted code from
their source implementations and the complete scripts for fine-
tuning and evaluation. Furthermore, the dedicated notebook used
for designing prompts and performing inference with the large
language models is also open-sourced.
Acknowledgements. This research was supported by the University
of Amsterdam Data Science Center and the project CaRe-NLP
(NGF.1607.22.014) - AiNed Fellowship Beurzen 2022-2023 which
is (partly) financed by the Dutch Research Council (NWO).

REFERENCES
[1] Mohamed Abdelaal, Christian Hammacher, and Harald Schoening. 2023. REIN:

A Comprehensive Benchmark Framework for Data Cleaning Methods in ML
Pipelines. Proceedings of the VLDB Endowment (PVLDB) (2023).

[2] Ziawasch Abedjan, Xu Chu, Dong Deng, Raul Castro Fernandez, Ihab F Ilyas,
Mourad Ouzzani, Paolo Papotti, Michael Stonebraker, and Nan Tang. 2016.
Detecting data errors: Where are we and what needs to be done? Proceedings
of the VLDB Endowment 9, 12 (2016), 993–1004.

[3] Alexander Borzunov, Max Ryabinin, Artem Chumachenko, Dmitry Baranchuk,
Tim Dettmers, Younes Belkada, Pavel Samygin, and Colin A Raffel. 2024.
Distributed inference and fine-tuning of large language models over the
internet. Advances in Neural Information Processing Systems 36 (2024).

[4] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[5] Riccardo Cappuzzo, Paolo Papotti, and Saravanan Thirumuruganathan. 2020.
Creating embeddings of heterogeneous relational datasets for data integration
tasks. In Proceedings of the 2020 ACM SIGMOD international conference on
management of data. 1335–1349.

[6] Peter Baile Chen, Fabian Wenz, Yi Zhang, Moe Kayali, Nesime Tatbul, Michael
Cafarella, Çağatay Demiralp, and Michael Stonebraker. 2024. BEAVER: An
Enterprise Benchmark for Text-to-SQL. arXiv preprint arXiv:2409.02038 (2024).

[7] Runjin Chen, Yanyan Shen, and Dongxiang Zhang. 2021. GNEM: a generic one-
to-set neural entity matching framework. In Proceedings of the Web Conference
2021. 1686–1694.

[8] Peter Christen. 2011. A survey of indexing techniques for scalable record
linkage and deduplication. IEEE transactions on knowledge and data engineering
24, 9 (2011), 1537–1555.

[9] Vassilis Christophides, Vasilis Efthymiou, Themis Palpanas, George Papadakis,
and Kostas Stefanidis. 2020. An overview of end-to-end entity resolution for
big data. ACM Computing Surveys (CSUR) 53, 6 (2020), 1–42.

[10] Sanjib Das, AnHai Doan, Paul Suganthan G. C., Chaitanya Gokhale, Pradap
Konda, Yash Govind, and Derek Paulsen. [n.d.]. The Magellan Data Repository.
https://sites.google.com/site/anhaidgroup/projects/data.

[11] JacobDevlin,Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805 (2018).

[12] AnHai Doan, Pradap Konda, Paul Suganthan GC, Yash Govind, Derek Paulsen,
Kaushik Chandrasekhar, Philip Martinkus, and Matthew Christie. 2020.
Magellan: toward building ecosystems of entity matching solutions. Commun.
ACM 63, 8 (2020), 83–91.

[13] Till Döhmen, Radu Geacu, Madelon Hulsebos, and Sebastian Schelter. 2024.
SchemaPile: A Large Collection of Relational Database Schemas. Proceedings
of the ACM on Management of Data 2, 3 (2024), 1–25.

[14] Muhammad Ebraheem, Saravanan Thirumuruganathan, Shafiq Joty, Mourad
Ouzzani, and Nan Tang. 2018. Distributed representations of tuples for
entity resolution. Proc. VLDB Endow. 11, 11 (July 2018), 1454–1467. https:
//doi.org/10.14778/3236187.3236198

[15] Grace Fan, Roee Shraga, and Renée J Miller. 2024. Gen-T: Table Reclamation
in Data Lakes. arXiv preprint arXiv:2403.14128 (2024).

[16] Xi Fang, Weijie Xu, Fiona Anting Tan, Jiani Zhang, Ziqing Hu, Yanjun Qi, Scott
Nickleach, Diego Socolinsky, Srinivasan Sengamedu, and Christos Faloutsos.
2024. Large Language Models on Tabular Data–A Survey. arXiv preprint
arXiv:2402.17944 (2024).

[17] Cheng Fu, Xianpei Han, Jiaming He, and Le Sun. 2021. Hierarchical matching
network for heterogeneous entity resolution. In Proceedings of the Twenty-
Ninth International Conference on International Joint Conferences on Artificial
Intelligence. 3665–3671.

[18] Yihan Gao, Silu Huang, and Aditya Parameswaran. 2018. Navigating the data
lake with datamaran: Automatically extracting structure from log datasets.
In Proceedings of the 2018 International Conference on Management of Data.
943–958.

[19] Bar Genossar, Avigdor Gal, and Roee Shraga. 2023. The battleship approach
to the low resource entity matching problem. Proceedings of the ACM on
Management of Data 1, 4 (2023), 1–25.

[20] Boris Glavic, Giansalvatore Mecca, Renée J Miller, Paolo Papotti, Donatello
Santoro, Enzo Veltri, et al. 2024. Similarity Measures For Incomplete
Database Instances. In Advances in Database Technology-EDBT. Vol. 27.
OpenProceedings. org, 461–473.

[21] Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. 2020. De-
berta: Decoding-enhanced bert with disentangled attention. arXiv preprint
arXiv:2006.03654 (2020).

[22] Zezhou Huang and Eugene Wu. 2024. Relationalizing Tables with Large
Language Models: The Promise and Challenges. In 2024 IEEE 40th International
Conference on Data Engineering Workshops (ICDEW). IEEE, 305–309.

[23] Nick Hynes, D. Sculley, and Michael Terry. 2017. The Data Linter: Lightweight
Automated Sanity Checking for ML Data Sets. Machine Learning Systems
workshop at NeurIPS (2017).

[24] Arjit Jain, Sunita Sarawagi, and Prithviraj Sen. 2021. Deep indexed active
learning for matching heterogeneous entity representations. arXiv preprint
arXiv:2104.03986 (2021).

[25] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin
Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei.

https://github.com/Jantory/cross-dataset-em-study
https://github.com/Jantory/cross-dataset-em-study
https://sites.google.com/site/anhaidgroup/projects/data
https://doi.org/10.14778/3236187.3236198
https://doi.org/10.14778/3236187.3236198

2020. Scaling laws for neural language models. arXiv preprint arXiv:2001.08361
(2020).

[26] Hanna Köpcke, Andreas Thor, and Erhard Rahm. 2010. Evaluation of entity
resolution approaches on real-world match problems. Proceedings of the VLDB
Endowment 3, 1-2 (2010), 484–493.

[27] Manuel Leone, Stefano Huber, Akhil Arora, Alberto García-Durán, and Robert
West. 2022. A critical re-evaluation of neural methods for entity alignment.
Proceedings of the VLDB Endowment 15, 8 (2022), 1712–1725.

[28] Guoliang Li, Xuanhe Zhou, and Xinyang Zhao. 2024. LLM for Data
Management. Proceedings of the VLDB Endowment 17, 12 (2024), 4213–4216.

[29] Peng Li, Yeye He, Dror Yashar, Weiwei Cui, Song Ge, Haidong Zhang, Danielle
Rifinski Fainman, Dongmei Zhang, and Surajit Chaudhuri. 2024. Table-GPT:
Table Fine-tuned GPT for Diverse Table Tasks. Proceedings of the ACM on
Management of Data 2, 3 (2024), 1–28.

[30] Peng Li, Xi Rao, Jennifer Blase, Yue Zhang, Xu Chu, and Ce Zhang. 2021.
CleanML: A study for evaluating the impact of data cleaning on ml classifi-
cation tasks. In 2021 IEEE 37th International Conference on Data Engineering
(ICDE). IEEE, 13–24.

[31] Yuliang Li, Jinfeng Li, Yoshihiko Suhara, AnHai Doan, and Wang-Chiew Tan.
2020. Deep entity matching with pre-trained language models. arXiv preprint
arXiv:2004.00584 (2020).

[32] Chunwei Liu, Matthew Russo, Michael Cafarella, Lei Cao, Peter Baille Chen,
Zui Chen, Michael Franklin, Tim Kraska, Samuel Madden, and Gerardo
Vitagliano. 2024. A Declarative System for Optimizing AI Workloads. arXiv
preprint arXiv:2405.14696 (2024).

[33] Kyle Luoma and Arun Kumar. 2024. SNAILS: Schema Naming Assessments
for Improved LLM-Based SQL Inference. https://adalabucsd.github.io/papers/
TR_2025_SNAILS.pdf.

[34] Jiaqi Ma, Zhe Zhao, Xinyang Yi, Jilin Chen, Lichan Hong, and Ed H Chi. 2018.
Modeling task relationships in multi-task learning with multi-gate mixture-
of-experts. In Proceedings of the 24th ACM SIGKDD international conference on
knowledge discovery & data mining. 1930–1939.

[35] Venkata Vamsikrishna Meduri, Lucian Popa, Prithviraj Sen, and Mohamed
Sarwat. 2020. A comprehensive benchmark framework for active learning
methods in entity matching. In Proceedings of the 2020 ACM SIGMOD
international conference on management of data. 1133–1147.

[36] Sidharth Mudgal, Han Li, Theodoros Rekatsinas, AnHai Doan, Youngchoon
Park, Ganesh Krishnan, Rohit Deep, Esteban Arcaute, and Vijay Raghavendra.
2018. Deep learning for entity matching: A design space exploration. In
Proceedings of the 2018 international conference on management of data. 19–34.

[37] Avanika Narayan et al. 2022. Can Foundation Models Wrangle Your Data?
PVLDB (2022).

[38] George Papadakis, Nishadi Kirielle, Peter Christen, and Themis Palpanas.
2024. A critical re-evaluation of benchmark datasets for (deep) learning-based
matching algorithms. ICDE (2024).

[39] George Papadakis, Dimitrios Skoutas, Emmanouil Thanos, and Themis
Palpanas. 2019. A survey of blocking and filtering techniques for entity
resolution. arXiv preprint arXiv:1905.06167 (2019).

[40] Simone Papicchio, Paolo Papotti, and Luca Cagliero. 2024. Qatch: Benchmark-
ing sql-centric tasks with table representation learning models on your data.
Advances in Neural Information Processing Systems 36 (2024).

[41] Ralph Peeters and Christian Bizer. 2023. Entity matching using large language
models. arXiv preprint arXiv:2310.11244 (2023).

[42] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and
Ilya Sutskever. 2019. Language models are unsupervised multitask learners.
OpenAI Blog 1, 8 (2019), 9.

[43] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text transformer. Journal of
machine learning research 21, 140 (2020), 1–67.

[44] Mohaimenul Azam Khan Raiaan, Md Saddam Hossain Mukta, Kaniz Fatema,
Nur Mohammad Fahad, Sadman Sakib, Most Marufatul Jannat Mim, Jubaer
Ahmad, Mohammed Eunus Ali, and Sami Azam. 2024. A review on large
Language Models: Architectures, applications, taxonomies, open issues and
challenges. IEEE Access (2024).

[45] Amazon Web Services. 2022. AWS Glue. https://aws.amazon.com/glue/.
[46] Amazon Web Services. 2022. Teaching the Find Matches transform. https:

//docs.aws.amazon.com/glue/latest/dg/machine-learning-teaching.html.
[47] Nima Shahbazi, Nikola Danevski, Fatemeh Nargesian, Abolfazl Asudeh, and

Divesh Srivastava. 2023. Through the Fairness Lens: Experimental Analysis
and Evaluation of Entity Matching. Proceedings of the VLDB Endowment 16,
11 (2023), 3279–3292.

[48] Michael Stonebraker, Ihab F Ilyas, et al. 2018. Data Integration: The Current
Status and the Way Forward. IEEE Data Eng. Bull. 41, 2 (2018), 3–9.

[49] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi,
Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open foundation and fine-tuned chat models.
arXiv preprint arXiv:2307.09288 (2023).

[50] Jianhong Tu, Ju Fan, Nan Tang, Peng Wang, Guoliang Li, Xiaoyong Du,
Xiaofeng Jia, and Song Gao. 2023. Unicorn: A unified multi-tasking model
for supporting matching tasks in data integration. Proceedings of the ACM on
Management of Data 1, 1 (2023), 1–26.

[51] David Vos, Till Döhmen, and Sebastian Schelter. 2022. Towards parameter-
efficient automation of data wrangling tasks with prefix-tuning. In NeurIPS
2022 First Table Representation Workshop.

[52] Jin Wang, Yuliang Li, Wataru Hirota, and Eser Kandogan. 2022. Machop: an
end-to-end generalized entity matching framework. In Proceedings of the Fifth
International Workshop on Exploiting Artificial Intelligence Techniques for Data
Management. 1–10.

[53] Junlin Wang, Jue Wang, Ben Athiwaratkun, Ce Zhang, and James Zou. 2024.
Mixture-of-Agents Enhances Large Language Model Capabilities. arXiv
preprint arXiv:2406.04692 (2024).

[54] Tianshu Wang, Xiaoyang Chen, Hongyu Lin, Xuanang Chen, Xianpei Han,
Hao Wang, Zhenyu Zeng, and Le Sun. 2024. Match, Compare, or Select? An
Investigation of Large Language Models for Entity Matching. arXiv preprint
arXiv:2405.16884 (2024).

[55] Renzhi Wu, Sanya Chaba, Saurabh Sawlani, Xu Chu, and Saravanan Thirumu-
ruganathan. 2020. Zeroer: Entity resolution using zero labeled examples. In
Proceedings of the 2020 ACM SIGMOD International Conference on Management
of Data. 1149–1164.

[56] Tao Xie, Kun Dai, Ke Wang, Ruifeng Li, and Lijun Zhao. 2024. Deepmatcher:
a deep transformer-based network for robust and accurate local feature
matching. Expert Systems with Applications 237 (2024).

[57] Doris Xin, Hui Miao, Aditya Parameswaran, and Neoklis Polyzotis. 2021.
Production machine learning pipelines: Empirical analysis and optimization
opportunities. In Proceedings of the 2021 International Conference on Manage-
ment of Data. 2639–2652.

[58] Reynold Xin. 2024. What’s new since SIGMOD 1985? - Perspective from a
decade of building Databricks. https://www.bifold.berlin/news-events/events/
view/event-details/perspective-from-a-decade-of-building-databricks.

[59] Dongxiang Zhang, Yuyang Nie, Sai Wu, Yanyan Shen, and Kian-Lee Tan.
2020. Multi-context attention for entity matching. In Proceedings of The Web
Conference 2020. 2634–2640.

[60] Haochen Zhang, Yuyang Dong, Chuan Xiao, and Masafumi Oyamada. 2023.
Jellyfish: A Large Language Model for Data Preprocessing. arXiv preprint
arXiv:2312.01678 (2023).

[61] Yi Zhang and Zachary G Ives. 2020. Finding related tables in data lakes for
interactive data science. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data. 1951–1966.

[62] Zeyu Zhang, Paul Groth, Iacer Calixto, and Sebastian Schelter. 2024.
AnyMatch–Efficient Zero-Shot Entity Matching with a Small Language Model.
arXiv preprint arXiv:2409.04073 (2024).

https://adalabucsd.github.io/papers/TR_2025_SNAILS.pdf
https://adalabucsd.github.io/papers/TR_2025_SNAILS.pdf
https://aws.amazon.com/glue/
https://docs.aws.amazon.com/glue/latest/dg/machine-learning-teaching.html
https://docs.aws.amazon.com/glue/latest/dg/machine-learning-teaching.html
https://www.bifold.berlin/news-events/events/view/event-details/perspective-from-a-decade-of-building-databricks
https://www.bifold.berlin/news-events/events/view/event-details/perspective-from-a-decade-of-building-databricks

	Abstract
	1 Introduction
	2 Evaluation Framework
	2.1 Cross-Dataset Entity Matching
	2.2 ``Leave-One-Dataset-Out'' Evaluation
	2.3 Measuring the Quality-Cost Trade-off

	3 Cross-Dataset EM Approaches
	3.1 Parameter-Free Models
	3.2 Fine-Tuned Small Language Models
	3.3 Instruction-Tuned or Continual-Tuned Language Models
	3.4 Prompted Large Language Models

	4 Evaluation & Analysis
	4.1 Prediction Quality
	4.2 Inference Throughput & Deployment Cost

	5 Lessons & Discussion
	5.1 Limitations and Future Work

	6 Related Work
	7 Conclusion
	References

