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ABSTRACT

Data is a central resource for modern enterprises and institutions,
and data validation is essential for ensuring the reliability of down-
stream applications. However, a major limitation of existing auto-
mated data unit testing frameworks is that they ignore the specific
requirements of the tasks that consume the data. This paper intro-
duces a task-aware approach to data validation that leverages large
language models to generate customized data unit tests based on
the semantics of downstream code. We present tadyv, a prototype
system that analyzes task code and dataset profiles to identify data
access patterns, infer implicit data assumptions, and produce ex-
ecutable code for data unit tests. We evaluate our prototype with
a novel benchmark comprising over 100 downstream tasks across
two datasets, including annotations of their column access patterns
and support for assessing the impact of synthetically injected data
errors. We demonstrate that tadv outperforms task-agnostic base-
lines in detecting the data columns accessed by downstream tasks
and generating data unit tests that account for the end-to-end im-
pact of data errors. We make our benchmark and prototype code
publicly available.
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1 INTRODUCTION

Data is a central resource for modern enterprises and institutions,
and data issues, such as missing or incorrect information, can se-
riously impact their operations [1, 24]. As a consequence, data
validation frameworks such as TensorFlow Data Validation [14],
Amazon’s Deequ [13, 16, 19], and Great Expectations [5] have be-
come widely used in industry in the last years. These frameworks
generate data unit tests by profiling a data sample and subsequently
inferring constraints based on heuristics, against which to validate
unseen data.

Shortcomings of data unit test frameworks in industry. How-
ever, existing frameworks suffer from various shortcomings: (i) the
heuristically suggested constraints are often either too strict or too
general and must typically be adjusted and extended by an end user
with domain knowledge; (ii) data unit tests are often developed
in a tedious, reactive way: once data problems become apparent
in production systems, these problems are manually fixed and the
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tests are extended to prevent their reoccurrence in the future; (iii) it
is difficult to tradeoff the precision/recall of alerts from data unit
tests, leading to a tension between false alarms and missed issues.
Researchers proposed several extensions to address these shortcom-
ings in recent years, which either leverage statistics from historical
executions [15, 20, 23] and large data corpora [4, 8, 21] or require a
human in the loop [7, 9, 11]. However, none of these approaches
have gained wide real-world adoption so far.

Towards automated task-aware data validation. We argue that
a major limitation of current approaches is that they focus on
observed data only and ignore the characteristics of downstream
tasks that consume the unseen data. This leads to several missed
opportunities to improve data unit tests and address some of the
outlined shortcomings. First of all, certain downstream tasks might
only access parts of the data, especially for large denormalized
datasets common in enterprise data lakes, which means that only
issues in these parts of the data must be considered for the task.
Secondly, in many cases, the code of downstream tasks will be
written by experienced data engineers, will have implicit knowledge
about the data “baked in”, and might therefore already be robust
against some data issues. Some downstream tasks like ML training
tasks might even be naturally robust against certain types of noise
in data. In summary, we argue that there is a lot of potential to
improve the automated generation of data unit tests by specializing
them to the downstream tasks for which they are deployed.

However, this specialization is inherently difficult as it requires
an “understanding” of downstream task code. Even seemingly sim-
ple problems like identifying which columns a piece of code accesses
are challenging and typically handled via static code analysis with
hand-curated knowledge bases [12]. Approaches like fuzzing-based
testing [14] are also difficult to apply in practice, as they assume
that one can generate synthetic input data and repeatedly execute
the downstream tasks in a “test mode”. This is impossible in many
industry settings, where task execution has side effects.

Overview and contributions. We propose to take downstream
tasks into account for automated data unit test generation. In par-
ticular, we proactively [25] generate specialized data unit tests for
each task, which take into account the specific data access pattern
and data assumptions of the task. We motivate this direction with
a running example (Section 2), present our LLM-based prototype
system tadv, which breaks down the task-aware data unit test gen-
eration into multiple steps (data profiling, column access detection,
constraint generation, and code generation). We discuss how to
implement each of these steps and leverage the code understand-
ing [6] and rule generation capabilities of LLMs [9, 10] in Section 3.
Finally, we design a novel benchmark for task-aware data unit
test generation with more than 100 downstream tasks of various
types (ML pipelines, SQL queries, website generation code) for two
datasets. This benchmark includes hand-labeled ground truth of
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Task 1 - SQL-based reporting
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Figure 1: Running example of a healthcare dataset evolving over time, where newly received data potentially contains errors.
Two downstream tasks, SQL-based reporting and ML model training, depend on this data, and a data unit test is required to
check whether these tasks can safely execute on the new data without failure or performance degradation.

column access patterns and functionality to evaluate the impact
of randomly injected data errors onto the performance of down-
stream tasks (Section 4). In summary, we provide the following
contributions.

o We introduce the problem of automated task-aware data unit test
generation with a running example (Section 2).

e We discuss tadv, our LLM-based prototype system, which breaks
down task-aware data unit test generation into multiple steps
such as data access pattern detection and constraint generation
from a task’s source code (Section 3).

o We design a novel benchmark for task-aware data unit test gener-
ation with more than 100 downstream tasks of various types for
two datasets, and conduct an extensive experimental evaluation
of our prototype (Section 4).

e We make our code and benchmark available under an open li-
cense at https://github.com/guangchen811/tadv/blob/deem/.

2 PROBLEM STATEMENT
We introduce the problem of this paper with a running example.

Running example. Our running example evolves around a fic-
titious healthcare provider, which processes externally supplied
data about the hospitalizations of patients, as shown on the left
side of Figure 1. This data includes personal information (ssn,
gender, race, bloodtype), information about diagnosis and stay
(diagnosis, admission_day, discharge_day), financial informa-
tion (insurance, cost) and an indication of whether there were
any complications. Updates to the data arrive in bulk over time,
e.g., a new data partition is received and has to be processed every
night. In our example, Dgpserveq denotes the data seen and pro-
cessed so far, while Dpew denotes the latest data partition received,
which has not been processed yet. Several downstream tasks have
to be run regularly to process newly arrived data. Our scenario
includes the following two toy examples for tasks:

o Task 1 - SQL-based reporting — The first task (code shown on
the top right side of Figure 1) generates a report from the data
by processing it via dataframe and SQL queries. In particular, it
computes the fraction of patients with rare blood types who are
diagnosed with a particular disease.

e Task 2 - ML model training — The second task (code shown on
the bottom right side of Figure 1) trains and deploys a machine
learning model to identify patients with potential complications
who might need prioritized care.

The data engineering team of the healthcare provider has re-
peatedly had to fix data quality incidents where downstream tasks
failed due to issues in the data, and the engineers had to spend
their weekends fixing the data and rerunning the affected down-
stream tasks. To avoid such problems in the future, they now want
to implement a data unit test [16] for the newly received data Dpew,
which is supposed to tell them whether it is safe to ingest the new
data. For that, they try out the automated generation of data unit
tests from TFDV (via “schema inference” [22]) and from Deequ
(via “constraint suggestion” [3]). These libraries profile the existing
data Dgpserved and apply several heuristics to produce a set of con-
straints to evaluate for the new data Dyey. We provide a notebook!
with the corresponding code.

Shortcomings of existing data validation approaches. The
data unit tests from both libraries reject Dpew due to the follow-
ing issues: the columns bloodtype and complications contain
previously unseen values (AB neg and Y) and the columns gender,
diagnosis and admission_day have missing values even though
they were complete in Dgpserved- This rejection triggers a detailed
investigation of the data from the engineering team and they also
study the code of the downstream tasks. During this investigation,
they gain the following insights: Task 1 can be safely run on Dpew,
as it only accesses the diagnosis and bloodtype columns of the
data and is robust to tuples with missing values, which it explicitly
removes via a dropna operation. Furthermore, the code shows that
AB neg is actually a valid value for a (very rare) bloodtype, as
it is hardcoded in a SQL query. Task 2 is also robust against the
issues flagged by TDFV and Deequ: it does not access the gender
column, it handles missing values in admission_day viaa fillna
operation and safely encodes missing values in diagnosis via the
get_dummies operation and also expects the N value in complica-
tions for the label_binarize operation. However, Task 1 actually

Lhttps://github.com/guangchen811/tadv/blob/deem/workflow/s2_experiments/t2_
constraint_inference/running_example/constraint_inference_demo.ipynb
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crashes when run on Dyeyw, but both Deequ and TFDV failed to
detect the corresponding data issue: the cost column must not con-
tain non-positive values due to a np. log operation used to encode
this feature, as the logarithm is only defined for positive values.
After the investigation, the data engineers realized the following
shortcomings of current approaches for generating data unit tests:

e Data unit tests generated via data profiling and heuristic rules
are often unreliable (e.g., with respect to rare categorical values)
and have to be manually adjusted by someone with appropriate
domain knowledge.

e In many cases, it is insufficient to have a single set of data unit
tests for a dataset, instead, a custom test for each downstream
task is needed, as each task accesses different parts of the data
and contains varying assumptions about the data.

Formal problem statement. We formally define the problem of
generating task-aware data unit tests. We are given a relational
dataset D = Dgpserved Y Dnew and a set of downstream tasks
T ={T1,..., T} with their corresponding source code {S1, ..., Sn},
which operate on this data. We assume that we initially have access
to Dobserved> Which contains well-formed data that can be success-
fully processed by the downstream tasks, and that we must validate
an unseen data partition Dpew, which arrives in bulk. A constraint
c: D — {0,1} is a boolean function, which typically computes
and evaluates an aggregate statistic on the data (e.g., whether the
number of missing values in a column is larger than a given thresh-
old). The concrete research problem is now to generate a data unit
test U; = {cio, . . ., cit } for each task T; based on the observed data
Dobserved and the source code S; of the task. The unit test U; should
operate in a way that the satisfaction of all constraints ¢ € U; im-
plies successful execution of the downstream task T; with Dpeyw as
input:

/\ c(Dnew) © Ti produces correct results for Dpew
celU;

3 APPROACH

We propose to break down the task-aware data unit test generation
problem into a set of steps, as illustrated in Figure 2, where steps
(@-@ are repeated for each task to generate custom data unit tests.
Our approach proceeds as follows: First, we run @ data profiling on
the observed data Dgpserved to infer data types, obtain descriptive
statistics, etc. We reuse existing techniques for this step [2, 9, 16].
The next step is @ column access detection, where we inspect the
source code S; of a T; to determine which columns of D pserved
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are accessed by the task. Next, we run 3 constraint generation to
generate a set of constraints for the task T; in natural language,
based on its accessed columns of D, the results from the data
profiling step and implicit assumptions mined from its source code
S;. Finally, we execute the (@ code generation step to turn the natural
language constraints into an executable data unit tests for task T;.

Implementation. We implement our approach in the prototype
system tadv. We use Deequ for data profiling @. We implement
column access detection 2 and constraint generation 3) via LLM
calls with custom-designed prompts and access to the source code
of the downstream tasks. Inspired by Toolformer [18], we also
use an LLM call to convert the constraints into executable Deequ
code @. We implement two variants of the constraint generation
step. In tadv [+deequl, we provide the LLM with the constraints
suggested by Deequ, allowing it to refine, add, or remove constraints
as needed. The variant tadv [+exp] instead supplies the LLM
with a natural language description of the heuristic rules used by
Deequ, offering insight into its underlying logic without prescribing
specific constraints. Throughout the process, we ask the LLM to
produce the output in JSON format. Since LLMs do not always
generate valid JSON consistently, we implement a retry mechanism
and re-run each LLM call up to three times if the output is invalid.

4 PRELIMINARY EXPERIMENTS

Datasets. We experiment with two datasets from Kaggle: a loan
approval2 dataset with 58,645 rows and 13 different columns, and a
dataset from the healthcare domain® with synthetic patient records
with 55,500 rows and 15 different columns. These real-world datasets
span diverse domains, various data types and contain semantically
rich personal information (e.g., age, income, blood type).

Downstream tasks. We experiment with three types of down-
stream tasks for each of the two datasets: ML scripts in Python (15
per dataset), SQL queries (30 per dataset), and Python scripts for
static website generation (10 per dataset). We generate the code for
the resulting 110 tasks via OpenAI’s GPT-40 model, guided by data
statistics, task descriptions, and input/output format requirements.
We ensure that each task is executable and manually refine the
code to make it reflect real-world characteristics (e.g., by adding
comments, introducing dead code, etc.).

4.1 Column Access Detection

Next, we evaluate how well tadv identifies accessed columns, which
is essential for focusing constraint suggestions on relevant data.

Experimental setup. We generate a benchmark for column access
detection by manually inspecting the code of each of our 110 down-
stream tasks and hand-labeling the exact columns it accesses. We
expose the task code to both tadv and a string-matching baseline.
The baseline infers accessed columns by checking whether each
column name, or a slight variation of it, appears as a substring in
the code. We predict the accessed columns with both approaches
and use the macro-averaged F1 score to evaluate predictive perfor-
mance, which balances precision (correctly predicted columns) and
recall (all accessed columns captured) across tasks.

https://www.kaggle.com/competitions/playground- series-s4e10
Shttps://www.kaggle.com/datasets/prasad22/healthcare- dataset
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Figure 3: F1 scores for column access detection on various
downstream tasks. Our system tadv outperforms the baseline
across all task types, often by a wide margin.

Results and discussion. We boxplot the distribution of the result-
ing F1 scores in Figure 3. Our system tadv outperforms the string-
matching baseline, often by a wide margin. On average across all
settings, tadv with GPT-3.5 achieves an F1 score 12.1% higher than
the string-matching baseline, while tadv with GPT-40 outperforms
the baseline by 22.3%. The best F1 scores come from tadv with GPT-
4.5 (26.3% higher than the baseline), although this LLM is currently
about 30 times more expensive than GPT-4o.

4.2 End-To-End Error Impact

This experiment evaluates tadv’s ability to distinguish between
harmful and non-harmful data errors in an end-to-end setting. It
assesses whether data unit tests can effectively detect issues that
adversely affect downstream task behavior.

Experimental setup. We extend Jenga [17] to inject diverse errors
into different columns of our datasets, simulating real-world data
issues such as missing or new categorical values, missing or extra
columns, numerical scaling, and noise. Thereby, we create a variety
of corrupted datasets on which we execute the tasks to assess their
performance, covering more than 500 cases. Next, we evaluate
generated data unit tests on these cases. Such a test is considered
effective if it passes on data that does not harm the downstream
task and fails on data that does. For ML tasks, we check whether the
script crashes or whether the model accuracy drops by more than
5%. For other tasks, we evaluate harm based solely on whether the
script executes successfully, as we lack an objective performance
metric, such as the F1 score used in ML tasks.

Methods. We compare fully automated data unit test generation ap-
proaches, and use the “constraint suggestion” feature of Deequ [16]
(deequ) and the “schema inference” feature from TensorFlow Data
Validation [14] (tensorflow-dv) as baselines. Both baselines gen-
erate constraints solely from the observed data without leveraging
downstream task information. We cannot include Great Expecta-
tions as a baseline, as it currently does not provide an automated
way to generate data unit tests. We evaluate tadv as an automated
and task-aware approach. We additionally include its two variants,
tadv [+deequ] and tadv [+exp] (see Section 3), to analyze the
benefits of integrating Deequ’s constraints and heuristics into tadv.

Results and discussion. The results in Table 1 show that in
terms of impactful error detection, tadv drastically outperforms
both deequ (with a difference of more than 0.5 in F1 score) and

Hao Chen and Sebastian Schelter

No impact Task failure
Method Pass False alarm Detection Miss | F1 Score
deequ 95 370 41 4 0.337
tensorflow-dv | 161 304 45 0 0.514
tadv 373 92 22 23 0.866
tadv [+deequ] | 344 121 33 12 0.838
tadv [+exp] 374 91 28 17 0.874

Table 1: Detection performance with respect to the impact
of data errors on downstream tasks. Task-aware methods
outperform deequ and tensorflow-dv by raising fewer false
alarms, with tadv [+exp] achieving the highest F1 score.

tensorflow-dv (with a difference of more than 0.3 in F1 score).
This is expected since the constraint generation mechanisms in
deequ and tensorflow-dv ignore the characteristics of the down-
stream tasks and are designed to produce strict, conservative con-
straints, which lead to a high number of false alarms (> 300 for
both) in this setup. Our system variant tadv [+exp] produces the
lowest number of false alarms while maintaining strong perfor-
mance in detecting task failures, highlighting the effectiveness of
leveraging task semantics and heuristic priors. In summary, these
findings confirm the potential of specializing data unit tests to their
respective downstream tasks.

4.3 Uncovering Implicit Data Assumptions

We present a selection of examples, which showcase that tadv
can generate task-aware constraints based on data assumptions
in the code. We find cases that show that tadv can trace opera-
tions on columns through code, e.g., in one task, the column "Date
of Admission" is renamed via df.rename({"Date of Admis-
sion": "admission_dt"}) and later converted to a date value via
pd.to_datetime(df.admission_dt) using the new name. Still,
tadv correctly generates a constraint stating that “Date of Admis-
sion should be convertible to a valid datetime format”. We also
observe a case where the task code explicitly checks the value
range of the Age column via assert X["Age"].min() > @ and
assert X["Age"J].max() <= 100. We find that tadv recognizes
this and generates corresponding constraints: “Age values must be
greater than 0” and “Age values must be less than or equal to 100”.

5 NEXT STEPS & OPEN QUESTIONS

To improve the robustness and accuracy of constraint generation,
we plan to incorporate additional task types and explore structured
code representations that better capture data operations. Future
extensions include support for more complex scenarios, such as con-
straints spanning multiple columns and tables, as well as handling
multi-file code bases. Moreover, we plan to expand our benchmark
with a dataset of detailed, task-specific constraints across all three
supported task types to enable more systematic evaluation. An open
question is how to define and measure the impact of data errors in
non-ML tasks, such as SQL queries and website generation, where
execution failures are currently the only available signal and may
be too coarse. In terms of failure handling, a key direction is to
determine whether validation failures arise from the data or the
task code, and to develop automated repair strategies for both.
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