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ABSTRACT
Similarity-based neighborhood methods, a simple and popu-
lar approach to collaborative filtering, infer their predictions
by finding users with similar taste or items that have been
similarly rated. If the number of users grows to millions,
the standard approach of sequentially examining each item
and looking at all interacting users does not scale. To solve
this problem, we develop a MapReduce algorithm for the
pairwise item comparison and top-N recommendation prob-
lem that scales linearly with respect to a growing number
of users. This parallel algorithm is able to work on parti-
tioned data and is general in that it supports a wide range
of similarity measures. We evaluate our algorithm on a large
dataset consisting of 700 million song ratings from Yahoo!
Music.

Categories and Subject Descriptors
H.4.m [Information Systems Applications]: Miscella-
neous

Keywords
Scalable Collaborative Filtering, MapReduce

1. INTRODUCTION
Today’s internet users face an ever increasing amount of

data, which makes it constantly harder and more time con-
suming to pick out the interesting pieces of information from
all the noise. This situation has triggered the development
of recommender systems: intelligent filters that learn about
the users’ preferences and figure out the most relevant in-
formation for them.

With rapidly growing data sizes, the processing efficiency
and scalability of the systems and their underlying compu-
tations becomes a major concern. In a production environ-
ment, the offline computations necessary for running a rec-
ommender system must be periodically executed as part of
larger analytical workflows and thereby underly strict time
and resource constraints. For economic and operational rea-
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sons it is often undesirable to execute these offline compu-
tations on a single machine: this machine might fail and
with growing data sizes constant hardware upgrades might
be necessary to improve the machine’s performance to meet
the time constraints. Due to these disadvantages, a single
machine solution can quickly become expensive and hard to
operate.

In order to solve this problem, recent advances in large
scale data processing propose to run data-intensive, analyt-
ical computations in a parallel and fault-tolerant manner
on a large number of commodity machines. Doing so will
make the execution independent of single machine failures
and will furthermore allow the increase of computational
performance by simply adding more machines to the cluster,
thereby obviating the need for constant hardware upgrades
to a single machine. Another economic advantage of such
an approach is that the cluster machines can be temporally
rented from a cloud computing infrastructure provider.

When applied to recommender systems, this technical ap-
proach requires the rephrasing of existing algorithms to en-
able them to utilize a parallel processing platform. Such
platforms are able to run on a cluster of up to several thou-
sand machines and to store and process amounts of data
that were previously considered unmanageable. They typi-
cally employ a shared-nothing architecture together with a
parallel programming paradigm and store the data in repli-
cated partitions across the cluster. They provide the de-
sired horizontal scalability when the number of machines in
the cluster is increased. Furthermore they relieve the pro-
grammer from having to cope with the complicated tasks
of scheduling computation, transferring intermediate results
and dealing with machine failures.

We rephrase and scale out the similarity-based neighbor-
hood methods, a standard approach in academic literature
[22]. They have the advantage of being simple and intuitive
to understand, as they are directly inspired by recommen-
dation in everyday life, where we tend to check out things
we heard about from like-minded friends or things that seem
similar to what we already like. They capture local associ-
ations in the data which increases serendipity [22] and they
are necessary as part of ensembles to reach optimal predic-
tion quality [5]. The item-based variants [23] of the neigh-
borhood methods are highly stable and allow computation of
recommendations for new users without the need to rebuild
the model. Additionally, they are able to provide instant
justifications for their recommendations by presenting the
list of neighbor items and the ratings the user already gave
to these as explanation. Due to these properties, neighbor-



hood methods are often preferred in industrial use cases [19,
1, 24, 7], although alternative approaches such as the latent
factor models are superior in the task of predicting ratings.

We improve the scalability of the similarity-based neigh-
borhood methods by rephrasing the underlying algorithm for
pairwise comparisons to MapReduce [8], a popular parallel
programming paradigm that has originally been proposed
by Google. We demonstrate our approach using Apache
Hadoop [2], a widely used, open source platform which im-
plements the MapReduce paradigm.

We already contributed an implementation of the approach
presented here to Apache Mahout [3], an open-source li-
brary of scalable data mining algorithms, where it forms the
core of the distributed recommender module.

In this paper, we provide the following contributions:

• We introduce an algorithmic framework that allows
scalable neighborhood-based recommendation on a par-
allel processing platform.

• We describe how to implement a variety of similarity
measures in a highly efficient manner in our frame-
work.

• We discuss how to apply selective down-sampling to
handle scaling issues introduced by the heavy tailed
distribution of user interactions commonly encountered
in recommendation mining scenarios.

• We present experiments on various datasets with up
to 700 million user interactions.

This paper is organized as follows: After a brief intro-
duction to the MapReduce paradigm for parallel processing,
we describe the algorithmic challenges of our approach in
Section 2 and related work in Section 3. We describe and in
detail derive our algorithm in Section 4. Finally, we evaluate
our solution on various datasets in Section 5.

1.1 MapReduce
MapReduce [8], which is inspired by functional program-

ming, has become a popular paradigm for data-intensive
parallel processing on shared-nothing clusters.

The data to process is split and stored block-wise across
the machines of the cluster in a distributed file system (DFS)
and is usually represented as (key,value) tuples. In order
to efficiently parallelize the computation and offer tolerance
against machine failures, data is replicated across the clus-
ter. As the computation tasks should be moved to the data,
the runtime system assigns tasks to process data blocks to
the machines holding the replicas of these blocks. The com-
putation code is embedded into two functions:

map: (k1, v1) → list(k2, v2)
reduce: (k2, list(v2)) → list(v2)

The data flow in a MapReduce pass is illustrated in Fig-
ure 1. At the beginning the map function is invoked on the
input data in parallel on all the participating machines in
the cluster. The output tuples are grouped (partitioned and
sorted) by their key and then sent to the reducer machines
in the shuffle phase. The receiving machines merge the tu-
ples and invoke the reduce function on all tuples sharing
the same key. The output of that function is written to the
distributed file system afterwards.

Figure 1: Illustration of the data flow in MapReduce

An optional third function called combine can be spec-
ified. It is invoked locally after the map phase and can be
used to preaggregate the tuples in order to minimize the
amount of data that has to be sent over the network, which
is usually the most scarce resource in a distributed environ-
ment.

combine: (k2, list(v2)) → list(v2)

In addition, Hadoop offers initialize functions that are in-
voked before the map and reduce functions and the system
provides a means to broadcast small files to all worker ma-
chines in the cluster via a distributed cache.

2. PROBLEM STATEMENT
Let A be a |U |× |I| matrix holding all known interactions

between a set of users U and a set of items I. A user u is
represented by his item interaction history au•, the u-th row
of A. The top-N recommendations for this user correspond
to the first N items selected from a ranking ru of all items
according to how strongly they would be preferred by the
user. This ranking is inferred from patterns found in A.

2.1 Computational model
Notation hints: au• denotes the u-th row of the interac-

tion matrix A, a•i denotes the i-th column of A, |U | denotes
the number of users which is equal to the number of rows
in A. foreach i ∈ v denotes iteration over the indexes of
non-zero entries of a vector v, foreach (i, k) ∈ v denotes
iteration over the indexes and the corresponding non-zero
values of a vector v.

In order to get a clearer picture of the neighborhood ap-
proach, it is useful to express the algorithm in terms of lin-
ear algebraic operations. Neighborhood-based methods find
and rank items that have been preferred by other users who
share parts of the interaction history au•. Let A be a binary
matrix with Aui = 1 if a user u has interacted with an item
i and Aui = 0 otherwise. For pairwise comparison between
users, a dot product of rows of A gives the number of items
that the corresponding users have in common. Similarly,
a dot product of columns of A gives the number of users
who have interacted with both items corresponding to the
columns.

When computing recommendations for a particular user
with User-Based Collaborative Filtering [21], first a search
for other users with similar taste is conducted. This trans-
lates to multiplying the matrix A by the user’s interaction
history au•, which results in a ranking of all users. Sec-
ondly, the active user’s preference for an item is estimated
by computing the weighted sum of all other users’ prefer-
ences for this item and the corresponding ranking. In our



simple model this translates to multiplying the ranking of
all users with AT. This means the whole approach can be
summarized by the following two multiplications:

ru = AT(Aau•)

To exploit the higher stability of relations between items,
another variant of the neighborhood methods called Item-
Based Collaborative Filtering [23] was developed, which looks
at items first and weighs their cooccurrences. This approach
computes a matrix of item-to-item similarities and allows
for fast recommendations as the model does not have to be
recomputed for new users. Expressing the item-based ap-
proach translates to simply moving the parentheses in our
formula, as ATA gives exactly the matrix of the item cooc-
currences:

ru = (ATA) au•

This shows that both user- and item-based collaborative
filtering share the same fundamental computational model.
In the rest of the paper, we will focus on the more popular
item-based variant.

2.2 Sequential approach
The standard sequential approach [19] for computing the

item similarity matrix S = ATA is shown in Algorithm 1.

Algorithm 1: sequential approach for computing item
cooccurrences

foreach item i do
foreach user u who interacted with i do

foreach item j that u also interacted with do
Sij = Sij + 1

For each item i, we need to look up each user u who
interacted with i. Then we iterate over each other item j
from u’s interaction history and record the cooccurrence of
i and j. We can mathematically express the approach using
three nested summations:

S = ATA =

|I|∑
i=1

|U|∑
u=1

|I|∑
j=1

AT
i,u ·Au,j

If we wish to distribute the computation across several
machines on a shared-nothing cluster, this approach be-
comes infeasible as it requires random access to both users
and items in its inner loops. Its random access pattern can-
not be realized efficiently when we have to work on parti-
tioned data.

Furthermore, at a first glance, the complexity of the item-
based approach is quadratic in the number of items, as each
item has to be compared with every other item. However,
the interaction matrix A is usually very sparse. It is common
that only a small fraction of all cells are known1 and that the
number of non-zero elements in A is linear in the number of
rows of A. This fact severely limits the number of item pairs
to be compared, as only pairs that share at least one inter-
acting user have to be taken into consideration. It decreases
the complexity of the algorithm to quadratic in the number
of non-zeros in the densest row rather than quadratic in the
number of columns. The cost of the algorithm is expressed

1in the datasets we used for our experiments, this ratio varies
from 0.1% to 4.5%

as the sum of processing the square of the number of in-
teractions of each single user. Unfortunately, collaborative
filtering datasets share a property that is common among
datasets generated by human interactions: the number of in-
teractions per user follows a heavy tailed distribution which
means that processing a small number of ‘power users’ dom-
inates the cost of the algorithm.

We will develop a parallelizable formulation of the compu-
tation to scale out this approach on a parallel processing
platform. As we need to utilize a distributed filesystem, our
algorithm must be able to work with partitioned input data.
Furthermore, it must scale linearly with respect to a grow-
ing number of users. We will enable the usage of a wide
range of similarity measures and add means to handle the
computational overhead introduced by ‘power users’.

3. RELATED WORK
Most closely related to our work is a MapReduce formula-

tion of item-based collaborative filtering presented by Jiang
et al. [17]. However they do not show how to use a wide va-
riety of similarity measures, they do not achieve linear scal-
ability as they undertake no means to handle the quadratic
complexity introduced by ‘power users’ and only present ex-
periments on a small dataset. Another distributed imple-
mentation of an item-based approach is used by Youtube’s
recommender system [7], which applies a domain specific
way of diversifying the recommendations by interpreting the
pairwise item similarities as a graph. Unfortunately this
work does not include details that describe how the similar-
ity computation is actually executed other than stating it
uses a series of MapReduce computations walking through
the user/video graph. Furthermore, a very early implemen-
tation of a distributed item-based approach was applied in
the recommendation system of the TiVo set-top boxes [1],
which suggests upcoming TV shows to its users. In a pro-
prietary architecture, show correlations are computed on
the server side and preference estimation is afterwards con-
ducted on the client boxes using the precomputed correla-
tions.

There have also been several works on parallelizing latent
factor models: The recommender system of Google News [6]
uses a MapReduce based implementation combining Prob-
abilistic Latent Semantic Indexing and a neighborhood ap-
proach with a distributed hashtable that tracks item cooc-
currences in realtime. This solution is tailored towards the
outstanding infrastructure of Google and might not be prac-
tical in other scenarios. Another parallelizable implementa-
tion of a latent factor model was presented by Zhou et al.
[26], where a factorization of the Netflix dataset using Alter-
nating Least Squares is conducted. Mahout [3] contains a
MapReduce port of this approach. Similarly, Gemulla et
al. [15] propose a stratified version of Stochastic Gradi-
ent Descent for matrix factorization on MapReduce. Due
to Hadoop’s inability to efficiently execute iterative algo-
rithms, these implementations show unsatisfactory perfor-
mance. Dataflow systems with explicit iteration support
such as Stratosphere [12] or specialized systems for machine
learning such as GraphLab [20] will pose a solution for the
efficient distributed execution of such algorithms in the near
future.



4. ALGORITHM
This section discusses the step-by-step development of our

algorithmic framework. We start with showing how to con-
duct distributed item cooccurrence counting for our simple
model that uses binary data. After that we generalize the
approach to non-binary data and enable the usage of a wide
variety of similarity measures. Finally, we discuss means
to sparsify the similarity matrix, conduct batch recommen-
dation and apply selective down sampling to achieve linear
scalability with a growing number of users.

4.1 Counting item cooccurrences
In order to scale out the similarity computation from Al-

gorithm 1, it needs to be phrased as a parallel algorithm,
to make its runtime speedup proportional to the number of
machines in the cluster. This is not possible with the stan-
dard sequential approach, as it requires random access to the
rows and columns of A in the inner loops of Algorithm 1,
which cannot be efficiently realized in a distributed, shared-
nothing environment where the algorithm has to work on
partitioned data.

We need to find a way of executing this multiplication
that is better suited to the MapReduce paradigm and has
an access pattern that is compatible to partitioned data.
The solution is to rearrange the loops of Algorithm 1 to get
the row outer product formulation of matrix multiplication.
Because the u-th column of AT is identical to the u-th row
of A, we can compute S with only needing access to the rows
of A:

S = ATA =

|U|∑
u=1

|I|∑
i=1

|I|∑
j=1

AT
i,u ·Au,j =

|U|∑
u=1

au•(au•)
T

Following this finding, we partition A by its rows (the
users) and store it in the distributed file system. Each map
function reads a single row of A, computes the row’s outer
product with itself and sends the resulting intermediary ma-
trix row-wise over the network. The reduce function simply
has to sum up all partial results, thereby computing a row
of S per invocation (Algorithm 2).

This approach allows us to exploit the sparsity of the inter-
mediary outer product matrices by making the map function
only return non-zero entries. At the same time we apply a
combiner (which is identical to the reducer) on the vectors
emitted by the mappers, which makes the system minimize
the amount of data that has to be sent over the network.
Additionally we only compute the upper triangular half of
S, as the resulting similarity matrix is symmetric.

4.2 Generalized similarity computation
Real world datasets contain richer representations of the

user interactions than a simple binary encoding. They ei-
ther consist of explicit feedback like numerical ratings that
the users chose from a predefined scale or of implicit feedback
where we count how often a particular behavior such as a
click or a page view was observed. We need to be able to
choose from a variety of similarity measures for comparing
these item interactions, in order to be able to find the one
that best captures the relationships inherent in the data.
From now on, we drop the assumption that A contains only
binary entries and assume that it holds such explicit or im-
plicit feedback data.

Algorithm 2: computing item coocurrences

function map(au•):
foreach i ∈ au• do

c← sparse_vector()

foreach j ∈ au• with j > i do
c[j]← 1

emit(i, c)

function combine(i, c1, ..., cn):
c← vector_add(c1, ..., cn)
emit(i, c)

function reduce(i, c1, ..., cn):
s← vector_add(c1, ..., cn)
emit(i, s)

Expressing arbitrary similarity measures: We incor-
porate a wide range of measures for comparing the inter-
actions of two items i and j by integrating three canonical
functions into our algorithm. We first adjust each item rat-
ing vector via a function preprocess():

î = preprocess( i ) ĵ = preprocess( j )

Next, the second function norm() computes a single num-
ber from the preprocessed vector of an item:

ni = norm( î ) nj = norm( ĵ )

These preprocessing and norm computations are conducted
in an additional single pass over the data, which starts with
AT, applies the two functions and transposes AT to form A.

The next pass over the data is a modification of the ap-
proach presented in Section 4.1. Instead of summing up
cooccurrence counts, we now compute the dot products of
the preprocessed vectors.

dotij = î · ĵ

We provide those together with the numbers we computed
via the norm function to a third function called similar-
ity() which will compute a measure-specific similarity value
(Algorithm 3).

Sij = similarity( dotij , ni, nj )

With this approach we are able to incorporate a wide vari-
ety of different similarity measures which can be rephrased
as a variant of computing a dot product. Note that this
technique preserves the ability to apply a combiner in each
pass over the data and is therefore highly efficient.

Table 1 describes how to express several common simi-
larity measures through these canonical functions, including
cosine, Pearson correlation and a couple of others evaluated
by Google for recommending communities in its social net-
work Orkut [24].

Example: The Jaccard coefficient between items i and j
(two columns from the interaction matrix A) is computed
as the ratio of the number of users interacting with both
items to the number of users interacting with at least one of
those items. It can easily be expressed by our algorithmic
framework, as this example shows:

i =

1
−
3

 j =

2
1
5





Pass 1 : We start by having preprocess binarize the vectors:

î = bin(i) =

1
0
1

 ĵ = bin(j) =

1
1
1


The second function that is invoked for each of the vectors
is norm. We let it return the L1 norm, which gives us the
number of non-zero components of each of the binary vec-
tors:

ni = ‖ î ‖1 = 2 nj = ‖ ĵ ‖1 = 3

Pass 2 : Finally the function similarity will be called given
the dot product between the preprocessed vectors and their
precomputed norms. We have to rearrange the formula of
the Jaccard coefficient so that it can be computed from the
numbers we have at hand:

jaccard(i, j) =
|i ∩ j|
|i ∪ j| =

dotij
ni + nj − dotij

=
2

2 + 3− 2
=

2

3

Algorithm 3: computing arbitrary item similarities

function map(au•):
foreach (i, k1) ∈ au• do

d← sparse_vector()

foreach (j, k2) ∈ au• with j > i do
d[j]← k1k2

emit(i, d)

function combine(i, d1, ..., dn):
d← vector_add(d1, ..., dn)
emit(i, d)

function initialize_reducer():

n← load_norms()

function reduce(i, d1, ..., dn):
dots← vector_add(d1, ..., dn)
s← sparse_vector()

foreach j, d ∈ dots do
s[j] = similarity(d, n[i], n[j])

emit(i, s)

4.3 Sparsification
In order to be able to handle cases with an enormous

number of items, we add means to decrease the density of
the similarity matrix S to our final implementation.

To get rid of pairs with near-zero similarity, a similarity
threshold can be specified, for which we evaluate a size con-
straint to prune lower scoring item pairs early in the process
[4] and eventually remove all entries from S that are smaller
than the threshold. Note however that this threshold is data
dependent and must be determined experimentally to avoid
negative effects on prediction quality.

Furthermore, it has been shown that the prediction qual-
ity of the item-based approach is sufficient if only the top
fraction of the similar items is used [23], therefore we add
another MapReduce step that only retains these top similar
items per item in a single pass over the data.

4.4 Batch recommendation
Although the similarity matrix is usually used to compute

recommendations online, some use cases such as generating
personalized newsletters require batch recommendation for

measure preprocess norm similarity

Cosine
v
‖v‖2 - dotij

Pearson
correlation

(v−v̄)
‖v−v̄‖2

- dotij

Euclidean
distance

- v̂2
√

ni − 2 · dotij + nj

Common
neighbors

bin(v) - dotij

Jaccard
coefficient

bin(v) ‖v̂‖1
dotij

ni+nj−dotij

Manhattan
distance

bin(v) ‖v̂‖1 ni + nj − 2 · dotij

Pointwise
Mutual
Information

bin(v) ‖v̂‖1
dotij
|U| log

dotij
ninj

Salton
IDF

bin(v) ‖v̂‖1
|U|·dotij

nin
2
j

(− log ni
|U| )

Log Odds bin(v) ‖v̂‖1 log

|U|·dotij
nin

2
j

1−
|U|·dotij

nin
2
j

Log-
likelihood
ratio [10]

bin(v) ‖v̂‖1
2 · (H(dotij , nj − dotij , ni −
dotij , |U| − ni − nj + dotij) −
H(nj, |U|−nj)−H(ni, |U|−ni))

Table 1: expressing measures with the canonical functions

all users. To achieve that, we need another function called
recommend() that is invoked with the similarity matrix
S and item interaction history au• of an active user u and
returns the top-N items to recommend to that user. A vari-
ety of strategies can be applied in the estimation procedure,
ranging from simple weighted sum estimation [23], improved
by baseline estimates [18], to more advanced techniques that
incorporate domain specific knowledge and aim to diversify
recommendations [7].

If the similarity matrix fits into the memory of a single
mapper instance, the most efficient way of embedding the
recommendation computation is by executing a broadcast
join [9] of the users’ item interaction histories and the spar-
sified similarity matrix. As shown in Algorithm 4, the sim-
ilarity matrix is broadcasted to all worker machines in the
cluster via the distributed cache and the recommendations
are computed in a map-only job over the users’ interaction
histories. Such a job is highly efficient as no reducer is re-
quired, which obviates the need for the shuffle phase and its
associated sorting and network overhead.

In cases with an extreme number of items, the similarity
matrix might not fit into the mappers’ memory any more.
In such a case a less performant repartition join [13] has to
be used where the items each user has interacted with and
their corresponding rows from the similarity matrix are sent
over the network to a reducer that joins them after receival.

Algorithm 4: batch recommendation for all users

function initialize_mapper():

S ← load_similarity_matrix()

function map(u, au•):
r ← recommend(S, au•)
emit(u, r)



4.5 Linear scalability with a growing user base
Recall that our goal is to develop an algorithmic frame-

work that scales linearly with respect to a growing user base.
As described in Section 2.2, the cost of the item-based ap-
proach is dominated by the densest rows of A, which cor-
respond to the users with the most interactions. This cost,
which we express as the number of item cooccurrences to
consider, is the sum of the squares of the number of interac-
tions of each user.

The number of interactions per user usually follows a
heavy tailed distribution as illustrated in Figure 3 which
plots the ratio of users with more than n interactions to
the number of interactions n on a logarithmic scale. There-
fore, there exists a small number of ‘power users’ with an
unproportionally high amount of interactions. These dras-
tically increase the runtime, as the cost produced by them
is quadratic with the number of their interactions.

If we only look at the fact whether a user interacted with
an item or not, then we would intuitively not learn very
much from a ‘power user’: each additional item he interacts
with will cooccur with the vast amount of items he already
preferred. We would expect to gain more information from
users with less interactions but a highly differentiated taste.
Furthermore, as the relations between items tend to stabilize
quickly [22], we presume that a moderately sized number of
observations per item is sufficient to find its most similar
items.

Following this rationale, we decided to apply what we call
an interaction-cut : we selectively down sample the interac-
tion histories of the ‘power users’.

We apply this by randomly sampling p interactions from
each such user’s history, thereby limiting the maximum num-
ber of interactions per user in the dataset to p. Note that this
sampling is only applied to the small group of ‘power users’,
it does not affect the data contributed by the vast majority
of non-‘power users’ in the long tail. Capping the effort per
user in this way limits the overall cost of our approach to
|U | p2. We will experimentally show that a moderately sized
p is sufficient to achieve prediction quality close to that of
unsampled data. An optimal value for p is data dependent
and must be determined by hold-out tests.

5. EVALUATION
In this section we present the results of a sensitivity analy-

sis for the interaction-cut and conduct an experimental eval-
uation of our parallel algorithm on a large dataset1.

We will show that the prediction quality achieved by using
an interaction cut quickly converges to the prediction qual-
ity achieved with unsampled data. Subsequently, we will
analyze the relationship between the size of the interaction-
cut, the achieved quality and the runtime for the similarity
computation in our large dataset. After that we will study
the effects on the runtime speedup if we add more machines
to the Hadoop cluster as well as the scaling behavior with a
growing user base.

Prediction was conducted with weighted sum estimation
enhanced by baseline estimates [18]. In a preprocessing step
that has negligible computation cost, we estimate global user
and item biases bu and bi that describe the tendency to
deviate from the average rating µ. This gives us the simple

1code to repeat our experiments is available at
http://github.com/dima-tuberlin/publications-ssnmm
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Figure 2: sensitivity of the probability of interaction with an
item to an interaction-cut of size p in the Movielens dataset

baseline prediction bui = µ + bu + bi for the rating of a
user u to an item i. To finally predict the rating rui, we
use the normalized weighted sum over the user’s ratings to
the k most similar items of i, incorporating the baseline
predictions:

rui = bui +

∑
j∈Sk(i,u) Sij(Auj − buj)∑

j∈Sk(i,u) Sij

5.1 Effects of the interaction-cut
We conducted a sensitivity analysis of the effects of the

interaction-cut. We measured the effect on the probability
of interaction with an item and on prediction quality for
varying p on the Movielens2 dataset consisting of 1,000,209
ratings that 6,040 users gave to 3,706 movies.

For our first experiment, we ranked the items by their
probability of interaction as shown in the plot in the top
left corner in Figure 2. Next, we applied the interaction-
cut by sampling down the ratings of users whose number of
interactions in the training set exceeded p and repeated this
for several values of p. In the remaining plots of Figure 2, we
retained the order of the items found in the unsampled data
and plotted their probabilities after applying the interaction-
cut for a particular p. We see that for p ≥ 500 there is no
observable distortion in the ranking of the items, which is a
hint that this distribution is independent of the data omitted
by sampling down the interactions of the ‘power users’.

In our second experiment, we computed the prediction
quality (by mean average error) achieved by a particular p
by randomly splitting the rating data into 80% training and
20% test set based on the number of users. For this experi-
ment, we additionaly used the Flixster3 dataset consisting
of 8,196,077 ratings from 147,612 users to 48,794 movies.
Again, we applied the interaction-cut by sampling down the
ratings of users whose number of interactions in the training
set exceeded p and used the 80 most similar items per item
for rating prediction. For these small datasets, the tests were
conducted on a single machine using a modified version of
Mahout’s [3] GenericItemBasedRecommender.

Figure 4 shows the results of our experiments. Note that
the right-most data points are equivalent to the prediction
quality of the unsampled dataset. In the Movielens dataset
we see that for p > 400 the prediction quality converges to
the prediction quality of the unsampled data, in the Flixster

2http://www.grouplens.org/node/73
3http://www.cs.sfu.ca/∼sja25/personal/datasets/
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Figure 3: long tailed distribution of the
number of interactions per user in vari-
ous datasets

0 500 1000 1500 2000
p

0.64

0.66

0.68

0.70

0.72

0.74

m
ea

n 
av

er
ag

e 
er

ro
r

Movielens 1M
Flixster

Figure 4: effects of an interaction-cut of
size p on prediction quality in various
small datasets

0 200 400 600 800 1000 1200 1400
p

0.855

0.860

0.865

0.870

0.875

0.880

0.885

m
ea

n 
av

er
ag

e 
er

ro
r

0

100

200

300

400

500

600

ti
m

e 
(m

in
ut

es
)

MAE
runtime

Figure 5: prediction quality and runtime
for an interaction-cut of size p in the Ya-
hoo! Music dataset

dataset this happens at p > 750. There is no significant de-
crease in the error for incorporating more interactions from
the ‘power users’ after that. This confirms our expectation
that we can compute recommendations based on the user
data from the long tail and only samples from the ‘power
users’ without sacrificing prediction quality.

5.2 Parallel computation with MapReduce
The following experiments were conducted on a Hadoop

cluster with a MapReduce implementation of our approach.
The cluster consisted of six machines running Apache Hadoop
0.20.203 [2] with each machine having two 8-core Opteron
CPUs, 32 GB memory and four 1 TB disk drives. The ex-
periments for showing the linear speedup with the number of
machines were run on Amazon’s computing infrastructure,
where we rented m1.xlarge instances, 64-bit machines with
15 GB memory and eight virtual cores each.

5.2.1 Prediction quality
To test our approach in a demanding setting, we used

a very large ratings dataset1 which represents a snapshot
of the Yahoo! Music community’s preferences for various
songs that were collected between 2002 and 2006. The data
consists of 717,872,016 ratings that 1,823,179 users gave to
136,736 songs.

We used the 699 million training ratings provided in the
dataset to compute item similarities and measured the pre-
diction quality for the remaining 18 million held out rat-
ings. We computed the 50 most similar items per item with
Pearson correlation as similarity measure with a threshold
of 0.01. Figure 5 shows the results we got for differently
sized interaction cuts. We see that the prediction quality
converges for p > 600, similar to what we have observed for
the smaller datasets in Section 5.1. We additionally mea-
sured the root mean squared error and observed the same
behavior, the prediction quality converged to an error of 1.16
here. We see the expected quadratic increase in the runtime
for a growing p, which is weakened by the fact there is a
quickly shrinking number of users with more than p interac-
tions (from Figure 3 we know for example that only approx-
imately 9% of the users have more than 1000 interactions).

The computational overhead introduced by the ‘power
users’ is best illustrated when we compare the numbers for
p = 750 and p = 1000: we see a decrease of only 0.0007 in
the mean average error, yet the higher value of p accounts

1R2 - Yahoo! Music User Ratings of Songs with
Artist, Album, and Genre Meta Information, v. 1.0,
http://webscope.sandbox.yahoo.com/

for a nearly doubled runtime. We conclude that we are able
to achieve the convergence of the prediction quality in this
large dataset with a p that is extremely low compared to
the overall number of items and thereby results in a com-
putation cost that is easily manageable even by our small
Hadoop cluster.

In order to conduct a comparison to a single machine im-
plementation, we tried the item-based kNN recommender
of MyMediaLite [14], the GenericItemBasedRecommender
provided by Apache Mahout [3] and the ItemRecommender
from LensKit [11]. Unfortunately, not one of these was able
to complete the computation due to problems with memory
handling, although we ran them on a machine which had 48
GB of RAM available.

Based on our findings, we chose to set p to 600 for the
following scalability experiments.
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Figure 6: speedup for a
growing number of ma-
chines in Amazon EC2
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5.2.2 Linear speedup with the number of machines
The major promise of parallel processing platforms is seam-

less horizontal scale out by simply adding more machines to
the cluster. This requires the computation speedup to be
proportional to the number of machines. To experimen-
tally evaluate this property of our algorithm, we made use
of the ElasticMapReduce computing infrastructure provided
by Amazon, which allows us to run our algorithm on a cus-
tomly sized Hadoop cluster. We repeatedly ran the similar-
ity computation with an increasing number of cluster ma-
chines. Figure 6 shows the linear speedup as expected by
us. With 15 machines we were able to reduce the runtime
of the similarity computation to less than one hour.



5.2.3 Linear scale with a growing number of users
Finally, we evaluate the scaling behaviour of our approach

in the case of a rapid growth of the number of users. The
Yahoo! Music dataset is already partitioned into several
files, with each file containing approximately 77 million rat-
ings given by 200,000 unique users. In order to simulate
the growth of the user base, we used an increasing number
of these files as input to our parallel algorithm and mea-
sured the duration of the similarity computation. Figure 7
shows the algorithm’s runtime when scaling from 200,000 to
1,8 million users. We see a perfectly linear increase in the
runtime which confirms the applicability of our approach in
scenarios with enormously growing user bases.

As the speedup with the number of machines as well as
the runtime for a growing number of users scale linearly, we
can counter such growth by simply adding more machines
to the cluster to keep the computation time constant.

6. CONCLUSIONS
We showed how to build a scalable, neighboorhood-based

recommender system based on the MapReduce paradigm.
We rephrased the underlying pairwise comparison to run
on a parallel processing platform with partitioned data and
described how a wide variety of measures for comparing item
interactions easily integrate into our method. We introduced
a down sampling technique called interaction-cut to handle
the computational overhead introduced by ‘power users’.

For a variety of datasets, we experimentally showed that
the prediction quality quickly converges to that achieved
with unsampled data for moderately sized interaction-cuts.
We demonstrated a computation speedup that is linear in
the number of machines on a huge dataset of 700 million
interactions and showed the linear scale of the runtime with
a growing number of users on that data.

In future work we intend to explore how our method could
be used to scale out recommendation approaches that incor-
porate similarity computations on large networks [16, 25].
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