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ABSTRACT
The success of applications that process data critically depends
on the quality of the ingested data. Completeness of a data source
is essential in many cases. Yet, most missing value imputation ap-
proaches suffer from severe limitations. They are almost exclusively
restricted to numerical data, and they either offer only simple impu-
tation methods or are difficult to scale and maintain in production.
Here we present a robust and scalable approach to imputation that
extends to tables with non-numerical values, including unstruc-
tured text data in diverse languages. Experiments on public data
sets as well as data sets sampled from a large product catalog in
different languages (English and Japanese) demonstrate that the
proposed approach is both scalable and yields more accurate im-
putations than previous approaches. Training on data sets with
several million rows is a matter of minutes on a single machine.
With a median imputation F1 score of 0.93 across a broad selection
of data sets our approach achieves on average a 23-fold improve-
ment compared to mode imputation. While our system allows users
to apply state-of-the-art deep learning models if needed, we find
that often simple linear n-gram models perform on par with deep
learning methods at a much lower operational cost. The proposed
method learns all parameters of the entire imputation pipeline au-
tomatically in an end-to-end fashion, rendering it attractive as a
generic plugin both for engineers in charge of data pipelines where
data completeness is relevant, as well as for practitioners without
expertise in machine learning who need to impute missing values
in tables with non-numerical data.
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1 INTRODUCTION
The success of many applications that ingest data critically depends
on the quality of the data processed by those applications [26]. A
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central data quality problem is missing data. For instance in retail
scenarios with a large product catalog, a product with an empty
value for a product attribute is difficult to search for and is less
likely to be included in product recommendations.

Many methods for missing data imputation were proposed in
various application contexts: simple approaches such as mean or
mode imputation as implemented in most APIs for data wrangling
andMachine Learning (ML) pipelines (see footnote 1 for details with
respect to the pandas and Spark libraries), matrix completion for
recommendation systems [16] or supervised learning approaches
for social science applications [28, 30]. Most of these imputation
approaches, however, are either limited to small data sets or focus
on imputation of numerical data from other numerical data. But in
many real-world scenarios the data types are mixed and contain
text. This kind of data is not easily amenable to imputation with
existing methods or software packages, as discussed in more detail
in Section 2. In these cases the gap between a data source, con-
taining unstructured text data or categorical data, and a data sink,
often requiring complete data, needs to be bridged by custom code
to extract numerical features, feed the numerical values into an
imputation method and transform imputed numerical values back
into their non-numerical representation. Such custom code can be
difficult to maintain and imposes technical debt on the engineering
team in charge of a data pipeline [31].

Here we propose an imputation approach for tables with at-
tributes containing non-numerical data, including unstructured
text and categorical data. To reduce the amount of custom feature
extraction glue code for making non-numerical data amenable to
standard imputation methods, we designed a system that allows
its users to combine and automatically select feature extractors for
categorical and sequential non-numerical data, leveraging state of
the art deep learning methods and efficient optimization tools. Our
work extends existing imputation methods with respect to three
aspects. First in contrast to existing simple and scalable imputa-
tion approaches such as mode imputation, the system achieves on
average a 23-fold increase in imputation quality as measured by
the F1-score. Second in contrast to more sophisticated approaches,
such as k-nearest-neighbor based methods and other established
approaches [10, 30], the proposed approach scales to large data sets
as demonstrated in experiments on tables with millions of rows,
which is up to four orders of magnitude more data than consid-
ered in aforementioned imputation studies. And third in contrast to
other scalable data cleaning approaches, such as HoloClean [27] or
NADEEF [9], the proposed approach can be easily automated and
does not require human input. The motivation for using machine
learning and a scalable, automatable implementation is to enable
data engineers in charge of data pipelines to ensure completeness
as well as correctness of a data source. Beyond this application
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scenario, our system’s simple API (presented in Section 4) is also
beneficial for other use cases: users without any machine learning
experience or coding skills who want to run simple classification
experiments on non-numerical data can leverage the system as long
as they can export their data from an Excel sheet and specify the
target column.

In order to demonstrate the scalability and performance of our
approach, we present experiments on samples of a large product
catalog and on public datasets extracted from Wikipedia. In the
experiments on the product catalog, we impute missing product
attribute values for a variety of product types and attributes. The
sizes of the data sets sampled from the product catalog are between
several 1,000 rows and several million rows, which is between one
to four orders of magnitude larger than data sets in previous work
on missing value imputation on numerical data [10]. We evaluate
the imputations on product data with very different languages
(English and Japanese), and find that our system is able to deal with
different languages without any language-specific preprocessing,
such as tokenization. In the Wikipedia experiments, we impute
missing infobox attributes from the article abstracts for a number
of infobox properties.

A sketch of the proposed approach is shown in Figure 1. We
will use the running example of imputing missing color attributes
for products in a retail catalog. Our system operates on a table
with non-numerical data, where the column to be imputed is the
color attribute and the columns considered as input data for the
imputation are other product attribute columns such as product
description. The proposed approach then trains a machine learn-
ing model for each to be imputed column that learns to predict the
observed values of the to be imputed column from the remaining
columns (or a subset thereof). Each input column of the system is
fed into a featurizer component that processes sequential data (such
as unstructured text) or categorical data. In the case of the color
attribute, the to be imputed column is modeled as a categorical
variable that is predicted from the concatenation of all featurizer
outputs.

The reason we propose this imputation model is that in an ex-
tensive literature review we found that the topic of imputation for
non-numerical data beyond rule-based systems was not covered
very well. There exists a lot of work on imputation [30], and on
modeling non-numerical data, but to the best of our knowledge
there is no work on end-to-end systems that learn how to extract
features and impute missing values on non-numerical data at scale.
This paper aims at filling this gap by providing the following con-
tributions:

• Scalable deep learning for imputation. We present an impu-
tation approach that is based on state of the art deep learning
models (Section 3).
• High precision imputations. In extensive experiments on pub-
lic and private real-world datasets, we compare our imputation
approach against standard imputation baselines and observe up
to 100-fold improvements of imputation quality (Section 6).
• Language-agnostic text feature extraction.Our approach op-
erates on the character level and can impute with high precision
and recall independent of the language present in a data source
(Section 5, Section 6).

Product
Type Description Size Color

Shoe Ideal for running … 12UK Black

SDCards Best SDCard ever … 8GB Blue

Dress This yellow dress … M ?
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The first step in the model is to transform for each row the string data of each column c into a112

numerical representation xc. We use different encoders for different non-numerical data types and113

distinguish between categorical and sequential data. For categorical data the numerical representation114

xc 2 {1, 2, . . . , Mc} of the string data in column c was simply the index of the value histogram115

of size Mc; for notational simplicity also these scalar variables will be denoted as vector xc in the116

following. For sequential data, the numerical representation xc 2 {0, 1, 2, . . . , Ac}Sc is a vector of117

length Sc, where Sc denotes the length of the sequence or string in column c and Ac denotes the118

size of the set of all characters observed in column c. The data types were determined using heuristics.119

In the data sets used in the experiments the data types of the columns were easy to separate into120

free text fields (product description, bullet points, item name) and categorical variables121

(e.g. color, brand, size, ...). If the data types are not known upfront, heuristics based on the122

distribution of values in a column can be used [? ].123

Once the the non-numerical data is encoded into their respective numerical representation, a column124

specific feature extraction mapping �c(xk) 2 RD
c is computed, where Dk denotes the dimensionality125

for a latent variable associated with column c. We considered three different types of featurizers126

�c(.). For categorical data we use a one-hot encoded embedding (as known from word embeddings).127

For columns c with sequential string data we consider two different possibilities for �c(xc): an128

n-gram representation or a character-based embedding using a Long-Short-Term-Memory (LSTM)129

recurrent neural network [? ] TODO: CITATION. For the character n-gram representation, �c(x
c) is130

a hashing function that maps each n-gram, where n 2 {1, . . . , 5}, in the character sequence xc to131

a Dc dimensional vector; here Dc denotes here the number of hash buckets. Note that the hashing132

featurizer is a stateless component that does not require any training, whereas the other two types of133

feature maps contain parameters that are learned using backpropagation.134

For the case of categorical embeddings, we use a standard linear embedding fed into one fully135

connected layer. The hyperparameter for this featurizer was a single one and used to set both the136

embedding dimensionality as well as the number of hidden units of the output layer. In the LSTM137

case, we featurize xc by iterating an LSTM through the sequence of characters of xc
i that are each138

represented as continuous vector via a character embedding. The sequence of characters xc is then139

mapped to a sequence of states h(c, 1), . . . ,h(c,Sc) and we take the last state h(c,Sc), mapped through140

a fully connected layer as the featurization of xc. The hyperparameters of each LSTM featurizer are141

then the number of layers, the number of hidden units of the LSTM cell and the dimension of the142

characters embedding ci and the number of hidden units of the final fully connected output layer of143

the LSTM featurizer.144

Finally all feature vectors �c(x
c) are concatenated into one feature vector x̃ 2 RD where D =

P
Dc145

is the sum over all latent dimensions Dc. We will refer to the numerical representation of the values146

in the to-be-imputed column as y 2 {1, 2, . . . , Dy}, as in standard supervised learning settings. The147

symbols of the target columns use the same encoding as the aforementioned categorical variables.148

After the featurization x̃ of input or feature columns and the encoding y of the to-be-imputed149

column we can cast the imputation problem as a supervised problem by learning to predict the label150

distribution of y from x̃.151

Imputation is then performed by modeling p(y|x̃, ✓), the probability over all observed values or152

classes of y given an input or feature vector x̃ with some learned parameters ✓. The probability153

p(y|x̃, ✓) is modeled, as154

p(y|x̃, ✓) = softmax [W x̃ + b] (1)

where ✓ = (W, z, b) are parameters to learn with W 2 RDy⇥D, b 2 RD
y and z is a vector containing155

all parameters of all learned column featurizers �c. Finally, softmax(q) denotes the elementwise156

softmax function expqP
j expqj

where qj is the j element of a vector q.157

The parameters ✓ are learned by minimizing the cross-entropy loss between the predicted distribution158

and the observed labels y, e.g. by taking159

✓ = arg min
✓

NX

1

DyX

1

�log(p(y|x̃, ✓))>onehot(y) (2)

where p(y|x̃, ✓)) 2 RDy denotes the output of the model and N is the number of rows for which160

a value was observed in the target column corresponding to y. We use one-hot(y) 2 {0, 1}Dy to161
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Figure 1: Imputation example on non-numerical data with
deep learning; symbols explained in Section 3.

• End-to-end optimization of imputation model. Our system
learns numerical feature representations automatically and is
readily applicable as a plugin in data pipelines that require com-
pleteness for data sources (Section 3).

2 RELATEDWORK
Missing data is a common problem in statistics and has become
more important with the increasing availability of data and the
popularity of data science. Methods for dealing with missing data
can be divided into the following categories [21]:

(1) Remove cases with incomplete data
(2) Add dedicated missing value symbol
(3) Impute missing values

Approach (1) is also known as complete-case analysis and is the
simplest approach to implement – yet it has the decisive disadvan-
tage of excluding a large part of the data. Rows of a table are often
not complete, especially when dealing with heterogeneous data
sources. Discarding an entire row of a table if just one column has
a missing value would often discard a substantial part of the data.

Approach (2) is also simple to implement as it essentially only
introduces a placeholder symbol for missing data. The resulting data
is consumed by downstream ML models as if there were no missing
values. This approach can be considered the de-facto standard in
many machine learning pipelines and often achieves competitive
results, as the missingness of data can also convey information. If
the application is really only focused on the final output of a model
and the goal is to make a pipeline survive missing data cases, then
this approach is sensible.

Finally, approach (3) replaces missing values with substitute
values (also known as imputation). In many application scenarios
including the one considered in this work, users are interested in
imputing these missing values. For instance, when browsing for a
product, a customer might refine a search by specific queries (say
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for size or color filters). Such functionalities require the missing
values of the respective attributes to be imputed. The simplest
imputation methods fill in the same value for all missing data cases
for a given column of a table, similar to approach (2) outlined above.
Examples are mean imputation (for continuous numerical data)
or mode imputation (for non-numerical data), where the mean or
mode of the respective attribute distribution is imputed. These
imputation methods are implemented in most libraries and APIs
that offer imputation methods1. To the best of our knowledge, few
software packages for data wrangling/pipelining go beyond this
limited functionality and integrate with those well established tools.
While these approaches suffice for replacing missing data in order
to not make a data pipeline fail, they are not useful for actual
imputation of missing data since their precision and recall levels
are rather low as demonstrated by our experiments in Section 6.

For more sophisticated approaches to imputation, there is a sub-
stantial body of literature using both supervised as well as un-
supervised methods [30]. One example from supervised learning
is Hot Deck Imputation, which refers to the idea of using similar
entries of a table as source for finding substitute values [2]. Replace-
ment values can be found using k-nearest neighbors [3]. Another
approach leveraging supervised learning techniques is Multivari-
ate imputation by chained equations (MICE) [28]. The idea is to
learn a supervised model on all but one column of a table and use
that model to impute the missing values. This approach has been
adopted in many other studies, see [10].

Another line of research focuses on unsupervised methods for
imputation, such as matrix factorization [16, 22, 33]. Building on
research for recommender systems, matrix factorization techniques
were improved with respect to stability, speed and accuracy of im-
putations. However, not all use cases naturally lend themselves to
a matrix completion model. For instance, when dealing with tables
containing multiple columns with free text data, it is not obvious
how to apply these methods. Text data needs to be vectorized before
it can be cast into a matrix or tensor completion problem, which
often discards valuable information, such as the order of tokens
in a text. Another drawback of these methods is that they solve a
more difficult problem than the one we are actually interested in: in
many cases, we are merely interested in the imputation of a single
cell, not the entire row of a table; learning a model that only tries to
impute one column can be much faster and cheaper than learning a
model for the entire table. The most important drawback of matrix
factorization methods for the application scenario we consider is
however that it is not straightforward to obtain imputations for
new rows that were not present in the training data table. This is
because matrix factorization methods approximate each matrix en-
try as an inner product of some latent vectors. These latent vectors
are learned during training on the available training data. Hence,
for rows that were not amongst the training data, there is no latent
representation in the matrix factorization model. Computing such
a latent vector for new rows of a table can be too costly at predic-
tion time. One use case we are investigating in this work is that of
product attribute imputation in a large product catalog. In such a
scenario, an important requirement is to be able to ingest new data.
New data should be as complete as possible, so we would want to

1 DataFrame.fillna in pandas/Python and ml.feature.Imputer in Spark/Scala

impute missing values already when new products enter the catalog.
Ideally, we want to leverage information about products that are
already in the catalog. While this use case – imputation for new
data – can be tackled with matrix factorization type methods and
there are a number of solutions in the cold start recommender sys-
tems literature, it is much simpler to implement with the approach
presented here: as we do not learn a latent representation for each
row index of a table and use only the content of observed values
in the input columns for the imputations, our approach naturally
lends itself to ingesting new data from rows that were not in the
set of training data.

Another line of missing value imputation research in the data-
base community is using rule based systems, such as NADEEF [9],
which efficiently applies user-specified rules for the detection and
repairing of quality constraint violations. Such rule based systems
can achieve high precision for imputation, but this often requires
a domain expert in the loop to generate and maintain the set of
rules to apply. In our approach, we leverage machine learning to
allow for automatic high precision imputations. Yet another line of
research is the direction of active learning. Cleaning real world data
sets requires ground truth data, which is most easily obtained from
human annotators. If there is a human in the loop, active learn-
ing methods allow us to select and prioritize human effort [34].
ActiveClean uses active learning for prioritization and learns and
updates a convex loss model at the same time [17]. HoloClean gen-
erates a probabilistic model over a dataset that combines integrity
constraints and external data sources to generate data repair sug-
gestions [27]. While such research is important if humans are in
the loop, we focus on approaches that require as little human inter-
vention as possible. The solution presented in this work is however
easily extendable to batch based active learning scenarios, which
we consider a future research direction. Finally, a recent line of
work similar to our approach is [11], where the authors follow the
idea of MICE [28], but propose to leverage deep learning to impute
numerical values jointly (several columns at a time). Similar to the
previously mentioned approaches, this work only considers numer-
ical values on small data sets. In addition, the evaluation metric
in this study is very different from ours, as the authors evaluate
the error on a downstream classification or regression task, which
renders comparisons with our results difficult.

To summarize, to the best of our knowledge, there are few ma-
chine learning based solutions focusing on scalable missing value
imputation in tables with non-numerical data. A lot of the research
in the field of imputation originates from the social sciences [28]
or the life sciences [30], targeting tables with only dozens or hun-
dreds of rows. Next to the scalability issues, most of the existing
approaches assume that the data comes in matrix form and each col-
umn is numeric. In contrast to these approaches, our work focuses
on imputation for large data with non-numerical data types, with
an emphasis on extensibility to more heterogeneous data types.

3 IMPUTATION MODEL
In this section, we describe our proposed model for imputation. The
overall goal of the model is to obtain a probability estimate of the
likelihood of all potential values of an attribute or column, given an
imputation model and information extracted from other columns.
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For illustration, we work with the example use case presented in
Figure 1: given a product catalog where some product attributes,
say color of a product, are missing for some products, we want to
model the likelihood of all colors that could possibly be imputed. So
in the example in Figure 1, we would like to estimate the likelihood
for a product to have the color yellow given the information of all
other columns for this row/product as well as the trained imputation
model:

p (color=yellow | other columns, imputation model) (1)

As the product description for this particular product contained the
word ’yellow’, we would expect the likelihood for this color value
to be high. Generally, we would always predict the likelihood for all
of the possible values that an attribute can take and then take the
value that has the highest likelihood as the imputation for this value.
In practice it can be useful to tune the model for each potential
value to only make a prediction if the model achieves a certain
precision or recall required by an application. All parameters and
their optimization are explained in the following sections, but the
high level overview over the approach can be subdivided into four
separate stages also indicated in Figure 1:
(1) String representation: In this stage, we separate the columns

into input/feature and to-be-imputed/target columns. Data is
still in their textual representation. All rows that have an ob-
served value are considered for training data (and validation or
testing). Rows with missing values are considered for imputa-
tion.

(2) Numerical representation: In order to trainmachine learning
methods for imputation, we need to first create a numerical
representation of input and target columns. Depending on the
type of data, we either model columns as categorical variables
or sequential variables (such as free text fields).

(3) Feature representation: The quality of predictions of ma-
chine learning models depends critically on the feature repre-
sentation used.We build on a large body of work on embeddings
for categorical and sequential data and use learnable feature
representations.

(4) Imputation (Equation 3): We finally compute the likelihood
of all potential values from the concatenation of all extracted
features (Equation 3).
In the following, we explain all of these stages in detail. Through-

out the section, we use the index c ∈ {0, 1, 2, . . . ,C} to refer to input
or feature columns/attributes, either as superscript for vectors (in-
dicated by boldface font) or subscript for functions. We omit row
indices to keep notation simple. When we mention input data/fea-
tures or target variables, we always refer to a single row without a
row index.

Numerical encoding. In order to make the data amenable to ma-
chine learning models, the first step in the model is to transform
the string data of each column c for each row into a numerical
representation xc . We use different encoders for different non-
numerical data types and distinguish between categorical and se-
quential data. For categorical data, the numerical representation
xc ∈ {1, 2, . . . ,Mc } is the index of the value in the histogram of
sizeMc computed on column c ; note that we include an additional

missing symbol, hence there areMc + 1 values that xc can take. For
notational simplicity, these scalar variables will be denoted as vector
xc in the following. We chose to base the indexing on histograms in
order to retain the information on the symbol frequency and in or-
der to be able to discard too infrequent symbols more easily. For se-
quential data, the numerical representation xc ∈ {0, 1, 2, . . . ,Ac }Sc
is a vector of length Sc , where Sc denotes the length of the sequence
or string in column c andAc denotes the size of the set of all char-
acters observed in column c . Also here we include an additional
missing symbol that increases the number of possible symbols to
Ac + 1. The data types are determined using heuristics. In the data
sets used in the experiments, the data types of the columns are easy
to separate into free text fields (product description, bullet
points, item name) and categorical variables (e.g. color, brand,
size, . . . ). If the data types are not known upfront, heuristics
based on the distribution of values in a column can be used for type
detection.

Feature extraction. Machine learning models often produce inac-
curate predictions if the feature representation is not optimized –
and on the other hand, very simple machine learning models can
perform surprisingly well when the appropriate features are ex-
tracted from the data prior to model training and prediction. Here
we employ state-of-the-art methods from deep learning as well
as simple, but highly performant established feature extractors to
derive useful features from the numerical representation of the
data. Once the non-numerical data is encoded into their respec-
tive numerical representation, a column-specific feature extraction
mapping ϕc (xc ) ∈ RDc is computed, where Dc denotes the dimen-
sionality for a latent variable associated with column c . We consider
three different types of featurizers ϕc (·):

• Categorical variables:
– One-hot encoded embeddings
• Sequential variables:
– Hashed character n-grams
– Long short-term memory neural networks

For one-hot encoded categorical data we define a featurizer as an
embedding layer (as in word embeddings [24] or matrix factor-
ization [16]) that is fed into a single fully connected layer. The
hyperparameter for this featurizer is used to set both the embed-
ding dimensionality as well as the number of hidden units of the
output layer. For columns c with sequential string data, we con-
sider two different possibilities for ϕc (xc ): an n-gram represen-
tation or a character-based embedding using a long short-term
memory (LSTM) recurrent neural network [13]. For the character
n-gram representation, ϕc (xc ) is a hashing function that maps each
n-gram, with n ∈ {1, . . . , 5}, in the character sequence xc to a Dc di-
mensional vector; hereDc denotes here the number of hash buckets.
In the LSTM case, we featurize xc by iterating an LSTM through the
sequence of characters of xc that are each represented as a contin-
uous vector via a character embedding. The sequence of characters
xc is then mapped to a sequence of states h(c,1) , . . . , h(c,Sc ) ; we
take the last state h(c,Sc ) , mapped through a fully connected layer
as the featurization of xc . The hyperparameters of each LSTM fea-
turizer include the number of layers, the number of hidden units
of the LSTM cell, the dimension of the character embedding c , and
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the number of hidden units of the final fully connected output
layer of the LSTM featurizer. Note that the hashing featurizer is a
stateless component that does not require any training, whereas
the other two types of feature maps contain parameters that are
learned using backpropagation in an end-to-end fashion along with
all other model parameters. Finally, all feature vectors ϕc (xc ) are
concatenated into one feature vector

x̃ = [ϕ1 (x1),ϕ2 (x2), . . . ,ϕC (xC )] ∈ RD (2)

where D =
∑
Dc is the sum over all latent dimensions Dc . As is

common in the machine learning literature, we refer to the numeri-
cal representation of the values in the to-be-imputed target column
as y ∈ {1, 2, . . . ,Dy }.

Imputationmodel. After extracting the features x̃ of input columns
and the observed values y of the to be imputed column we cast the
imputation problem as a supervised learning problem by learning to
predict the label distribution of y from x̃. Our imputation approach
models p (y |x̃,θθθ ), the Dy -dimensional probability vector over all
possible values in the to be imputed column conditioned on some
learned model parameters θθθ and an input vector x̃ (containing in-
formation from other columns) with a standard logistic regression
type output layer

p (y |x̃,θθθ ) = softmax [Wx̃ + b] (3)

where the learned parameters θθθ = (W, z, b) include the learned pa-
rameters of the output layer (W, b) and z, comprising all parameters
of the learned column featurizers ϕc . Finally, softmax(q) denotes
the element-wise softmax function exp q∑

j exp qj
where qj is the j-th

element of a vector q. The parameters θθθ are learned by minimizing
the cross-entropy loss between the predicted distribution and the
observed labels y by computing

θθθ = argmin
θθθ

N∑
1
−log(p (y |x̃,θθθ ))⊤onehot(y) (4)

where log denotes element-wise logarithm and the sum runs over
N rows for which a value was observed in the target column cor-
responding to y. We use onehot(y) ∈ {0, 1}Dy to denote a one-hot
encoding of the label y, which is a vector of zeros and a single
one in the entry k corresponding to the class index encoded by
y. We apply standard backpropagation and stochastic gradient de-
scent (SGD) [6] in order to optimize all parameters, including those
of the featurization, in an end-to-end fashion. Training the model
with SGD is very memory efficient, as it requires us to only store
one mini-batch of data at a time in memory, which typically con-
sists of a few hundred rows of a table. The approach thus easily
scales to tables with millions of rows.

4 IMPLEMENTATION AND API
Building a real world machine learning application such as an end-
to-end imputation system poses not only algorithmic challenges,
but also requires careful thinking about the system design. The
goal of our work is to free users of our system from the need of
feature engineering. We use machine learning not only to learn the
imputation model, but also to learn an optimal feature extraction.

An important advantage of a system that automatically tunes
its parameters is that we can keep its interface simple and enable
practitioners without an ML background to use it. The API we
designed allows to impute missing values by just passing a table as
a pandas DataFrame to the imputation model and specifying the to
be imputed column and input columns, as shown in the Python code
in Listing 1. All (hyper-)parameters are derived from the data and
learned automatically. For data type detection, we use heuristics;
for the differentiable loss functions of the entire imputation model,
we use backpropagation and stochastic gradient descent; and for
hyperparameter optimization on non-differentiable loss functions
(as for instance the model architecture parameters such as number
of hidden units of an LSTM), we apply grid search (alternatives are
random search or bayesian global optimization techniques).
# load training and test tables

table = pandas.read_csv('products.csv')

missing = table[table['color ']. isnull ()]

# instantiate and train imputer

model = Imputer(

data_columns =['description ', 'product_type ', 'brand '],

label_columns =['color '])

.fit(table)

# impute missing values

imputed = model.transform(missing)

Listing 1: Example of Python imputation API.

We perform all encoding steps using custom Python code and stan-
dard libraries; for representing the table data we apply pandas,
for the hashing vectorizer on character n-grams, we leverage the
HashingVectorizer of scikit-learn [25]. We implement the
modeling steps performed after the numerical encoding of the
data in Apache MXNet[7]. The featurization (except for the char-
acter n-gram representation, which is passed to the network as a
sparse vector), is set up using the Symbolic Python API. We employ
the standard GPU-optimized version of MXNet for the LSTM-based
featurizations.

5 EXPERIMENTS
We ran experiments on a large sample of a product catalog and
on public Wikipedia datasets. For both datasets, we impute a vari-
ety of different attributes. As the number of valid attribute values
present in a given to be imputed column of the training data has a
strong impact on the task difficulty, we applied filters to make sure
that the results are comparable across product types and attributes.
We included only attribute values that were observed at least 100
times (for a product type) or at least once (in the smaller Wikipedia
data set) and considered only the 100 most frequent attribute values.

Product attributes. We used samples of a large product catalog
in different languages to demonstrate the ability of our system to
reliably impute data in non-numerical tables independent of the lan-
guage of the text in a table. In our experiments, we trained models
for imputing a set of attributes for product types listed in Table 2
for English and Japanese product data. Note that these two lan-
guages have very different alphabets and usually require language-
specific preprocessing. An example of such a language-specific
step would be tokenization, which can be difficult for some lan-
guages, including Japanese. We did not apply any language-specific
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preprocessing in our experiments and used the same imputation
models and parameter sets for both languages. For each product
type, we extracted all products that matched the language and the
product type. As input columns, we used both columns containing
unstructured text data (title, product description, bullet
points) as well as columns containing categorical variables (e.g.,
brand, manufacturer, size, display technology). The cardinal-
ity of the character set for sequential data was set to 100 (for English)
and to 1000 (for Japanese); 1000 characters covered most Japanese
letters and some Chinese symbols. The number of rows in the tables
sampled for these experiments was between 10,000 and 5,000,000.

Wikipedia. In addition to the product catalog data sample, we
extracted attributes found in the infoboxes of Wikipedia articles.
The data is publicly available as part of the DBpedia project. For
our experiments, we have used the 2016-10 version2. DBpedia pro-
vides the extracted Wikipedia graph in the turtle format, where
each row consists of triplets to describe subject, predicate,
object. We have mapped the textual (long abstracts) descriptions
of subjects to their corresponding infobox objects for birth_place,
genre and location. These predicates are most commonly found
in the infoboxes of Wikipedia articles. In many cases, each subject
may be related to several genre objects, e.g., by relating a band
to multiple genres. In order to transform the DBpedia data into a
multi-class dataset, where each training instance has exactly one
label associated to it, we have excluded all of the Wikipedia articles
with multiple objects per subject. The number of rows in the result-
ing tables were 129,729 for location, 333,106 for birthplace and
170,500 for genre.

Experimental settings. After extracting the string data tables, we
selected featurizers for each column depending on the data type,
as described in Section 3. In our experiments, we used one LSTM
per free text column in the case of LSTM featurizers; in the case of
the n-gram featurizer we concatenated and hashed the texts of all
columns into one feature vector using the same hashing function.
The LSTM hyperparameters were kept the same for the featurizers
of all columns. For all sequential features, we applied a sequence
length of 300 based on a heuristic using the length histograms of
representative data. Both types of sequential featurizers were com-
bined with the categorical embedding featurizers for all categorical
columns in the data set, excluding the to be imputed column.

We ran grid search for hyperparameter optimization. Next to the
model hyperparameters described in Section 3 we also optimized an
L2 norm regularizer using weight decay. An overview of the hyper-
parameters optimized can be found in Table 1. For all experiments,
we split the available data into a 80%, 10%, 10% split for training,
validation and test data, respectively. All metrics reported are com-
puted on test data which was not used for training or validation. All
experiments were run on a single GPU instance (1 GPU with 12GB
VRAM, 4 vCPUs with 60GB RAM)3. Training was performed with a
batch size of 128 and Adam SGD [15] for a maximum of 50 epochs
and early stopping if the loss does not improve for 3 consecutive
epochs. The two baseline approaches were performed in a Spark
2http://wiki.dbpedia.org/downloads-2016-10
3A single virtual CPU or vCPU on the AWS EC2 cloud service is a single hyperthread
and approximately equivalent to half a physical CPU.

shell running Scala/Spark on a single host (36 vCPU, 60 GB RAM).
The reason the experiments were performed on different hardware
is that for the Spark experiments we did not leverage GPUs.

Hyperparameter Range Best value(s)

LSTM layers [2,4] 2
LSTM hidden units [10, 150] {100, 120}
Dimensionality of LSTM output [10, 150] 100
Dimensionality of LSTM character embedding [10, 100] 50
Dimensionality of hashing vectorizer output [210, 220] {210, 215, 218 }
Dimensionality of embeddings for categorical variables [10, 50] 10
SGD learning rate [10−5, 10−1] {0.001, 0.008}
Weight Decay/L2 Regularization [0, 10−2] {0.0001, 0}

Table 1: Ranges and optimal (for a given model/data set) hy-
perparameters for model selection.

Baseline methods. For comparison, we added two baseline meth-
ods. The first baseline is a simple mode imputation, which always
predicts the most frequent value of a column. The second baseline
is a rule-based string matching approach that predicts the label that
had most string matches in the input columns, similar to rule-based
imputation engines, such as the approach presented in [9].

6 RESULTS
We performed extensive evaluations on Wikipedia data sets and
on product attribute data for several product types and attributes
sampled from a large product catalog. Methods are compared with
respect to imputation quality, as measured by F1 scores weighted
by class frequency, as well as with respect to their operational cost.

Product attribute results. Results for the imputation tasks for a
number of product types and various product attributes are listed
in Table 2. Our proposed approach reaches a median F1 score of
92.8% when using LSTM-based featurizers and a median F1 score
of 93% for a linear model with an n-gram featurizer. Both clearly
outperform the baselines mode imputation (median F1 4.1%) and
string matching of the label to the free form text columns (median
F1 30.1%). We argue that in the case we are considering, mode im-
putation can be considered the de-facto standard for imputation.
For one it is implemented in popular libraries for data pipelines
(footnote 1), hence it is the most accessible option for data engineers
working in these frameworks. Second, while there are a number
of open source packages for imputation in Python (e.g. MIDAS,
fancyimpute) and R (MICE), none of those packages address the
use case we are considering: all of those existing packages work
on matrices containing only numeric data. In contrast we are con-
sidering unstructured data like text as additional input. This use
case is not accounted for in existing packages, to the best of our
knowledge. Compared to mode imputation, we see an up to 100-fold
improvement in imputation F1 score (median 23-fold improvement)
with our proposed approach. The string matching method gives
an F1 score close to the best performing models only in rare cases
where the attribute value is usually included in the article name,
such as for the brand of shoes.
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Dataset Attribute Mode String matching LSTM N-gram

dress, EN
brand 0.4% 80.2% 99.9% 99.8%
manufacturer 1.0% 22.6% 99.0% 99.6%
size 3.7% 0.1% 77.4% 74.4%

monitor, EN
brand 12.4% 41.6% 93.5% 88.4%
display 27.6% 12.2% 90.0% 90.2%
manufacturer 13.8% 30.6% 91.2% 86.9%

notebook, EN
brand 3.8% 47.9% 98.7% 97.8%
cpu 80.0% 85.1% 95.6% 96.7%
manufacturer 4.0% 33.4% 92.8% 93.0%

shoes, EN

brand 0.5% 91.4% 99.8% 99.9%
manufacturer 0.5% 77.9% 97.1% 98.3%
size 1.2% 0.0% 54.8% 45.3%
toe style 12.1% 21.7% 89.1% 92.3%

shoes, JP

brand 2.6% 19.2% 98.4% 99.6%
color 16.8% 48.1% 78.0% 82.5%
size 51.1% 1.7% 66.6% 66.1%
style 57.6% 12.6% 87.0% 94.0%

Median 4.1% 30.1% 92.8% 93.0%

Table 2: F1 scores on held-out data for imputation task
product attributes for mode imputation, string matching,
LSTM and character n-gram featurizers. For each attribute,
between 10,000 and 5,000,000 products were sampled. In-
dependent of the featurizers used, LSTMs or n-grams, our
imputation approach outperforms both baselines in terms
of F1 score, achieving on average a 23-fold increase (com-
pared to mode imputation) and a 3-fold increase (compared
to string matching).

Wikipedia results. Also when imputing infobox properties from
Wikipedia abstracts, we see that both machine learning based impu-
tation methods, LSTMs and character n-gram models, significantly
outperform the baseline approaches Table 3. On average we observe
an almost 100-fold improvement in F1 score when comparing a
simple n-gram model to mode imputation. It is worth noting that
despite the strong improvements with the proposed machine learn-
ing imputation approach, the F1 scores of the imputations are only
reaching up to 72% for theWikipedia data. After inspecting the data
we attribute this to label noise. For instance the confusion matrix of
true and imputed values shows that in the imputation task for birth
place, when the true value is ’us’, the most frequent imputed values
are ’us’, ’california’ and ’florida’ or when the true value is ’wales’,
the most frequent imputed values are ’wales’, ’uk’ and ’england’.
So there are many ’misclassifications’ that are due to ambiguity
related to the political taxonomy of locations in the training data,
which we cannot expect the imputation model to correct for.

N-Grammodels vs. LSTM. In many experiments, we achieve high
scores with both the deep learning LSTM model and n-gram meth-
ods. The linear n-gram model often achieves competitive results:
only in six out of 20 cases, the LSTM clearly performed better than
the linear model. One reason for this could be that most of the tasks
are too simple for an LSTM to achieve much higher performance.
We assume that the advantage of the LSTM will become clearer
with more difficult imputation problems. However our results are
in line with some recent work that finds simple n-gram models to

Dataset Attribute Mode String matching LSTM N-gram

Wikipedia, English
birth place 0.3% 16.3% 54.1% 60.2%
genre 1.5% 6.4% 43.2% 72.4%
location 0.7% 7.5% 41.8% 60.0%

Median 0.7% 7.5% 43.2% 60.2%

Table 3: F1 scores on held-out data for imputation task Wi-
kipedia. See Table 2 for a description of columns.

compare favourably with more sophisticated neural network ar-
chitectures [12, 14]. The considerably faster training for the linear
model is an important factor for production settings. We therefore
compare the operational cost and training speed in the following
section.

Operational cost comparison. One application scenario of the
proposed method is automatic imputations in data pipelines to en-
sure completeness of data sources. In this setting, operational cost
imposed by the memory footprint of a model and the training time
can be an important factor. We compare the models used in our
experiments with respect to these factors. The size and training
speed of the models depends on the model selection process; we
measured model size in MB and sample throughput in samples per
seconds during training for the models with the highest validation
score. The model size in MB for n-gram models is 0.4/13.1/104.9
MB (5th/50th/95th percentile) and the model size for LSTM based
imputation models is 18.6/37.9/45.7 MB. Depending on the best
performing hyperparameter setting for a given data set, there are
some n-gram models that are much smaller or much larger than
the average LSTM models, but the median model size of n-gram
models is about three times smaller than that of LSTM models.
Sample throughput during training was one to two orders of mag-
nitude larger for imputation models using only character n-gram
features (1,079/11,648/77,488 samples per second) compared to deep
learning based LSTM featurizers (107/290/994 samples per second).
Assuming a sample throughput of 11,000 samples per second, one
training pass through a table with 1,000,000 rows takes less than
90 seconds. For a data set of this size, typically less than 10 passes
through the data are needed for training to converge.

7 LESSONS LEARNED
Whenwe set out to create a system for imputation on non-numerical
data, we faced the question of choosing appropriate algorithms and
execution platforms. Many of our initial decisions turned out to
be suboptimal in one way or another. In this section, we describe
some of the learnings we made along the way.

Choice of imputation method and feature extractors. The
first challenge was to decide which imputation method to use and
which featurization method should precede the imputation method.
As highlighted in Section 2, there seems to be a gap between the
methods used in practice by data engineers and machine learn-
ing practitioners (simple approaches such as mode imputation)
and the mathematically more sophisticated matrix factorization
approaches, which are less often encountered in practice. There are
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several reasons whywe decided not to follow the research onmatrix
factorization for imputation and opted for the approach presented
in this work. For one, the current approach is much simpler to
implement, to extend, and to adapt to new scenarios and data types.
For example, for image data, we can add an off-the-shelf pretrained
neural network [18] and fine tune it along with all other parameters
of the imputation model. Secondly, the approach presented here
is much cheaper to train. Matrix factorization models obtain an
advantage over other methods by modeling latent relationships
between all observed aspects of the data. In our approach, however,
we only learn to impute one column at a time, which can be more
efficient than modeling the entire table.

Another challenge we faced was the question of how to model
non-numerical data. We ran extensive studies on different types
of feature extractors, including linguistic knowledge, word embed-
dings, and also other types of sequential feature extractors, such
as convolutional neural networks [20]. The main conclusion from
those experiments are the same as we draw from the experiments
presented in this work: in practice many popular deep learning
approaches did not outperform rather simple feature extractors.
The systematic comparison in this study demonstrates that sparse
linear models with hashed n-gram character features achieve state
of the art results on some tasks when compared directly to deep
learning methods, similar to the findings in [14]. Such models are
much faster during training and prediction, work well on CPUs, and
require less memory. Yet, we emphasize that this could be related
to the data sets we tested on. We hypothesize that in more com-
plicated settings, LSTMs are more likely to produce better results
than linear n-gram models.

System-specific challenges. As of today, there are no off-the-
shelf solutions available for complex end-to-end machine learn-
ing deployments, and many data management related questions
from the ML space are only beginning to raise the attention of
the database community [19, 26, 31]. In practice, a wide variety of
systems is applied for large-scale ML, with different advantages and
drawbacks. These systems range from general-purpose distributed
dataflow systems such as Apache Spark [35], which support com-
plex preprocessing operations, but are difficult to program for ML
practitioners with a background in statistics or mathematics, to
specialized deep learning engines such as Apache MXNet [8] or
Google’s Tensorflow [1], which provide mathematical operators
optimized for different hardware platforms but lack support for
relational operations.

We started with an imputation approach built on a distributed
dataflow system, in particular the SparkML [23] API. We designed
an API on top of DataFrames, which allowed us to quickly build
and try different featurizer and imputation model combinations.
Spark turned out to be very helpful for large-scale data wrangling
and preprocessing workloads consisting of relational operations
mixed with UDFs, but is in our experience very difficult to use for
complex machine learning tasks [5]. The complexity of the data
(matrices and vectors) and the operations to apply forced us to
base our implementations on the low-level RDD-API, rather than the
SparkSQL API, which would provide automatic query optimization.
Programs on the RDD level represent hardcoded physical execution
plans that are usually tailored to run robustly in production setups,

and therefore naturally result in huge overheads when run on
smaller data. Additionally, difficult choices about thematerialization
of intermediate results are entirely left to the user [29].

Next, we leveraged a recently developed deep learning system [8]
for the imputation problem, which allow us to quickly design mod-
els and optimize them efficiently (even for non-neural network
models). This is due to dedicated mathematical operators, support
for automatic differentiation, and out-of-the-box efficient model
training with standard optimization algorithms on a variety of
hardware platforms. A major obstacle in leveraging deep learn-
ing frameworks is the integration with Spark-based preprocessing
pipelines. Deep learning toolboxes are typically used through their
Python bindings, and while Python offers a great ecosystem for
data analysis, we mostly aim to run preprocessing and feature ex-
traction workloads on the type safe and stable Spark/JVM platform.
In order to keep the best of both worlds, we used a hybrid system
that extracted features in Spark and communicated with MXNet via
a custom disk-based serialization format. In practice, this system
turned out to be difficult to use, as debugging required us often to
dig through several layers of stack traces [31]. We had to set up two
runtimes and tune their configurations (which can be especially dif-
ficult for Spark’s memory settings). Furthermore, experimentation
was not simple, as the feature extraction step was rather involved
and the required materialization of preprocessed features made it
tedious to quickly try out different features or data sets. Finally,
it is challenging to efficiently schedule the resulting workloads of
such hybrid systems, as the results from the Spark-based prepro-
cessing jobs, executed on clusters of commodity machines, need to
be transferred to specialized GPU instances for the training of deep
learning models.

8 CONCLUSION
We have presented an approach to missing value imputation for ta-
bles containing non-numerical attributes using deep learning. The
goal was to bridge the gap between existing imputation methods
that are primarily targeted at imputation of numerical data and
application scenarios where data comes in non-numerical tables.
Our approach defines a simple imputation API over tables with non-
numerical attributes that expects only the names of to-be-imputed
columns and the names of the columns used for imputation. Auto-
matic hyperparameter optimization is used to determine the optimal
combination of featurizer modules. If the data and its schema are
not known, heuristics can be used to use a custom architecture for
featurizing non-numerical content. The presented system allows
researchers and data engineers to plug in an imputation component
into a data pipeline to ensure completeness of a data source using
state-of-the-art machine learning models. In extensive experiments
on product data from a sample of a large product catalog as well
as a number of data sets obtained from Wikipedia, we have shown
that the approach efficiently and reliably imputes missing product
attributes in tables with millions of rows. Model training time for
a table of about one million rows and up to ten input columns is
usually between a few minutes for a simple model configuration,
such as a sparse linear character n-gram model, and around an hour
for the most complex models, on a single GPU instance. Experi-
ments on product data in English and Japanese demonstrate that
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our character based approach is language-agnostic and can be used
for imputation of tables that contain very different languages.

In our experiments, we found that while deep learning methods
perform very well, a simple character n-gram feature extraction
often achieves competitive results. This could be due to the fact
that the task was too easy. On the compute instances on which we
ran experiments, simple linear character n-gram models achieved
throughputs of several ten thousand samples per second during
training, whereas models with the LSTM-based featurizers usu-
ally only could process several hundreds of rows of a table during
learning. Depending on the task and the best hyperparameter con-
figuration, LSTM based models can be smaller in size compared
to the n-gram models. On average however n-gram models are
not only faster to train but also smaller in size. This finding con-
firms other work that highlights the potential of relatively simple
n-gram models especially when compared to more expensive to
train neural network architectures [12, 14] We note that while the
current setting was restricted to imputation of categorical values, it
can be extended straightforwardly by adding a standard numerical
regression loss function. Another extension is to consider imputing
several columns at the same time, potentially of different types.
This can be easily adapted by summing the column specific losses.
We did run experiments with such multi-task loss functions but
we found that single output models perform best when evaluated
on single columns only. Finally, we highlight that many existing
imputation approaches are based on matrix factorization and learn
a latent representations associated with each row index of a table.
This makes it more difficult to impute values for new rows of a table,
a use case that is relevant when new rows need to be appended to a
table. Our approach was designed to allow for simple and efficient
insertions of new rows while preserving the ability to compute a
latent numerical representation for each row which could be used
for other purposes, such as information retrieval, recommenda-
tion systems, or nearest neighbor search in large tables containing
non-numerical data [4].

The code used in this study is available as open source package
https://github.com/awslabs/datawig.
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