
mlidea: Interactively Improving ML Data Preparation Code
via “Shadow Pipelines”

Stefan Grafberger
BIFOLD & TU Berlin

grafberger@tu-berlin.de

Paul Groth
University of Amsterdam

p.groth@uva.nl

Sebastian Schelter
BIFOLD & TU Berlin
schelter@tu-berlin.de

ABSTRACT
Data scientists develop ML pipelines in an iterative manner: they
repeatedly screen a pipeline for potential issues, debug it, and then
revise and improve its code according to their findings. However,
this manual process is tedious and error-prone. To address this
challenge, we propose to assist data scientists with automatically
derived interactive suggestions for pipeline improvements during this
development cycle. We demonstrate mlidea, a library to gener-
ate interactive suggestions with so-called shadow pipelines, hidden
variants of the original pipeline that modify it to auto-detect po-
tential issues, try out modifications for improvements, and suggest
and explain these modifications to the user. Our system uses in-
cremental view maintenance to enable data scientists to quickly
iterate on their code and to ensure low-latency maintenance of
the shadow pipelines. We demonstrate how our system improves
code for various domains with three interactive shadow pipelines:
fixing mislabeled rows, enhancing robustness against data quality
problems, and improving pipeline performance on data slices with
subpar predictions.

PVLDB Reference Format:
Stefan Grafberger, Paul Groth, and Sebastian Schelter. mlidea:
Interactively Improving ML Data Preparation Code
via “Shadow Pipelines”. PVLDB, 14(1): XXX-XXX, 2020.
doi:XX.XX/XXX.XX

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/stefan-grafberger/mlidea-demo.

1 INTRODUCTION
Software systems that learn from data with machine learning (ML)
have become ubiquitous, influencing critical decisions. Unfortu-
nately, ML pipelines are often brittle with respect to their input
data [1, 16, 19, 22]. Consequently, data-centric techniques are being
developed to detect, quantify, and improve the reliability, fairness,
and prediction quality of ML applications. Applying these tech-
niques to ML pipelines currently requires a high level of expertise,
as existing approaches [5, 7, 13, 17, 21] assume that data scientists
know in advance what kind of errors they are looking for.
Interactively improving ML pipelines with mlidea. In practice,
data scientists typically do not know in advancewhat pipeline issues

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 1 ISSN 2150-8097.
doi:XX.XX/XXX.XX

to look for, and often “discover serious issues only after deploying
their systems in the real world” [10]. At development time, data
scientists currently have to iteratively screen their pipeline for
potential issues, debug these issues, and then revise and improve
their code according to their findings. This process is tedious, as it
requires repeated manual code re-organisation and re-execution in
an environment like a Jupyter notebook.

We argue that ML pipeline development should be accompanied
by interactive suggestions to improve the pipeline code, similar to
code inspections in modern IDEs like IntelliJ [11] or text corrections
in writing assistants like Grammarly [9]. Compared to previous
work like mlinspect [7] and mlwhatif [5], we address three new
challenges: (i) enabling low-latency auto-detection of pipeline im-
provement opportunities for seamless integration into the develop-
ment workflow; (ii) identifying issues spanning multiple operators,
rather than being constrained to isolated operator checks [7]; and
(iii) providing provenance-enabled explanations [2] for detected
problems and suggested improvements. Note that AI coding assis-
tants like Copilot [4] are orthogonal to our approach. While they
suggest code changes, they focus on static, code-centric improve-
ments without assessing the impact on ML pipeline performance.
In contrast, our approach generates and evaluates suggestions by
dynamically executing the pipeline, analyzing the data flowing
through the pipeline, experimenting with changes, and quantifying
the performance impact of each suggestion. Thus, our approach
complements existing AI tools by offering a data-centric platform
for efficiently evaluating code suggestions, applying data-centric
ML techniques, and encoding best practices.
We recently proposed mlidea [6], a library that interactively assists
data scientists with suggestions for improving ML data prepara-
tion code. To enable low-latency suggestions, mlidea introduces
“shadowpipelines”, which are hidden variants of the original pipeline
that modify it to auto-detect potential issues, try out modifications
for improvements, and suggest and explain these modifications
to the user. Shadow pipelines generate potential modifications for
improvement using both expert-designed rules and LLMs. When
possible, the suggestions take the form of source code changes,
which mlidea can automatically try to merge into the user code
with the help of LLMs. Our systemworks directly with declaratively
written code using popular data science libraries and applies incre-
mental view maintenance for low-latency updates of the original
pipeline and the maintenance of the shadow pipelines.
Demonstration details. We showcase three different shadow
pipelines that mlidea can automatically generate from existing
pipeline code to interactively assist data scientists. Attendees will
be able to experiment with mlidea on pipelines from different do-
mains, implemented using popular data science libraries like scikit-
learn, pandas, keras, and langchain, using both retrieval-augmented

https://doi.org/XX.XX/XXX.XX
https://github.com/stefan-grafberger/mlidea-demo
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/XX.XX/XXX.XX

Data Source
users.pqt

Project
content

Filter
country

Project
content

Embed

Project
anhed.

Project
anhed.

Score
Accuracy

Embed

Data Source
tweets.csv

Join
user_id

Project
anhedonia

expression
regex

Data Source
expert_labeled.pqt

ytrain

ytestXtest

Xtrain

ypred

Concat

Join
embedding similarity

Predict
 LLM API + RAG

In
st

ru
m

en
te

d
U

se
r P

ip
el

in
e

Data Errors

Slices With an additional
translation step,
the accuracy for
lang=“bengali”
improves by more
than 32%!

Typos decrease
the accuracy by
more than 3%!
Add a spelling
correction step to
reduce this to only
0.2%!

Label Errors Fixing these 20
mislabeled rows
improves the
accuracy by more
than 2%!

Shadow
 Pipelines for Pipeline Im

provem
ents

Figure 1: Overview of mlidea – several automatically main-
tained "shadow pipelines" identify data-related issues in a
user’s ML pipeline code at development time and give action-
able suggestions for improvements.

LLMs and traditional ML models. We provide a web-based user in-
terface for the attendees to experience mlidea from the perspective
of a data scientist to interactively improve their pipeline code by
iteratively fixing mislabeled rows [12, 13], increasing the robust-
ness against data quality issues [20], and improving prediction
performance on underperforming data slices [3, 18]. Attendees can
also explore how mlidea extracts a logical query plan from the
original pipeline, generates shadow pipelines based on the original
query plan, and uses incremental view maintenance to provide low-
latency suggestions. We provide the web-based user interface for
our demonstration, along with all example pipelines and datasets,
at https://github.com/stefan-grafberger/mlidea-demo.

2 SYSTEM OVERVIEW
In the following, we provide a brief overview of mlidea. For further
details, we refer to [6] and the open source code of our library at
https://github.com/stefan-grafberger/mlidea.
Core ideas. Figure 1 gives a high-level overview of our approach:
mlidea instruments a data scientist’s ML pipeline code and creates
and maintains so-called “shadow pipelines” with low-latency to gen-
erate suggestions for improvements. Such a shadow pipeline is a
hidden variant of the original pipeline, which modifies it to auto-
detect potential issues and tries out different pipeline changes for
improvement opportunities. Subsequently, each shadow pipeline
provides the user with code suggestions to improve the pipeline, ac-
companied by a provenance-based explanation and a quantification
of the expected impact on the pipeline outputs.
Warnings and suggestions via shadow pipelines. To generate
shadow pipelines, mlidea starts by extracting the logical query
plan of the original pipeline [5, 7]. Our system then uses this query
plan to generate its shadow pipelines, each of which executes the
following steps: (𝑖) the first step is issue detection, for which the
shadow pipeline introduces operators that take intermediates from

the original pipeline as input to screen for potential problems. (𝑖𝑖)
For detected issues, the shadow pipeline integrates and evaluates po-
tential fixes, generates the corresponding provenance-based change
explanations, and provides a quantification of the expected impact
on the pipeline outputs. To reduce overhead, the shadow pipelines
only compute small changes compared to the original pipeline by
efficiently using intermediates from it as input (sometimes re-using
intermediates on a tuple-level [15]) and avoid costly operations
like model re-training. In cases where such re-training is unavoid-
able, they use cheap proxy models [12] to estimate the impact of a
change on expensive models like neural networks. For provenance-
based explanations, mlidea tracks the fine-grained provenance of
individual records throughout the user pipeline and its shadow
pipelines. This provenance information is additionally used to con-
struct the inputs for data-centric AI techniques like SliceLine [18]
that require information from various parts of the ML pipeline, such
as the feature matrix, predicted and ground-truth labels, and the
corresponding rows from the initial unfeaturized input data [21].
Interactively improving ML pipelines via IVM. As users iter-
atively improve their pipelines with the help of our system, they
continuously rewrite and rerun their pipelines. In light of such
rewrites, we update the original pipeline and its shadow pipelines
with incremental view maintenance (IVM) techniques [15], based
on detected changes in operators or input tuples. mlidea applies
IVM whenever possible, but falls back to full recomputation when
necessary, particularly if there are multiple local subsequent op-
erator changes in the query plan. Between different executions of
the user’s code, mlidea compares the extracted logical query plan
with the query plan from previous executions to detect changes. A
query plan node is considered unchanged if the previous pipeline
contained an operator with the same function call applied to the
same parent nodes with the same non-data arguments. mlidea
caches intermediate results for every node, as long as memory
allows. During pipeline execution, mlidea incrementally updates
intermediates based on detected query plan changes, and falls back
to fully executing operations only when necessary.

3 DEMONSTRATION DETAILS
We demonstrate mlidea with a web-based interface (illustrated in
Figure 2). This interface allows attendees to interactively improve
ML pipelines based on suggestions from three shadow pipelines [3,
12, 13, 18, 20], and to automatically apply the suggested code im-
provements to existing pipeline code from different domains (social
media posts, healthcare, census data) and different ML models (both
traditional models and retrieval-augmented LLMs). Attendees will
iteratively improve the source code of the ML pipelines, while inter-
actively receiving detailed warnings and suggestions from mlidea.
Two of the shadow pipelines can even directly suggest source code
changes and apply them using LLM-based code rewriting. Further-
more, attendees can observe in real-time how mlidea drastically
reduces execution times during iterative ML pipeline development
by using IVM, allowing for quick iterations without fully re-running
the pipelines after every small change. The interface also visualizes
how mlidea extracts logical query plans from user code, generates
shadow pipelines based on it, and incrementally maintains the orig-
inal pipeline and its shadow pipelines.

2

https://github.com/stefan-grafberger/mlidea-demo
https://github.com/stefan-grafberger/mlidea

Code editor for
interactively working
on ML pipelines

1

Logical query plan
extracted from the
pipeline source code
during execution

2

Automatically derived shadow
pipelines, generated based on
the original query plan

3

Warnings, suggestions,
and provenance-based
explanations generated
by the shadow pipelines

5

During pipeline re-execution, mlidea
uses incremental view maintenance to
enable an interactive user experience

4

Figure 2: Web-based user interface: On the left, attendees interactively work on the pipeline code 1 . In the middle, attendees
can inspect how mlidea internally extracts a logical query plan from the code 2 , generates shadow pipelines to detect issues and
automatically try potential fixes 3 , and how it uses incremental view maintenance to enable an interactive user experience 4 .
On the right, attendees observe issues detected by mlidea, along with suggestions and provenance-based explanations 5 .

We demonstrate mlidea and its three exemplary shadow pipeline
as follows:

(i) Attendees choose one of our provided ML pipeline scenarios,
and we briefly introduce them to the ML pipeline code and
the shadow pipelines.

(ii) Attendees run the ML pipeline with mlidea. Then, they in-
spect and discuss warnings and suggestions from the shadow
pipelines with us and other attendees. These reports include
provenance-based explanations for recommended changes
and sometimes even automatically applicable code changes.

(iii) Attendees then interactively address detected problems with
the help of mlidea. They experience how mlidea’s IVM helps
with quickly iterating on code, and how the shadow pipeline
outputs change based on changes to the original pipeline.

(iv) Finally, we provide attendees with a deeper understanding of
how the shadow pipelines and mlidea’s IVMwork. Our inter-
face visualizes the query plans extracted from their pipeline
code and the generated shadow pipelines, allowing attendees
to explore them freely as they iterate on the pipeline code.

In detail, we include the following three shadow pipelines:
Shadow pipeline 1: Interactively refining label quality. This
shadow pipeline enables attendees to iteratively refine label quality,
a crucial factor in ML pipeline performance. With provenance-
based explanations for the results from existing techniques for
detecting label errors [12, 13] and IVM for efficient execution of ML
pipelines on changed input data, mlidea allows quick iterations on
ML pipeline code and data. Unlike previous approaches [14], which

do not consider end-to-end ML pipelines with data preparation
steps like data integration, mlidea provides system support for
interactively improving data preparation pipelines, a process that
is tedious and error-prone without assistance [8].
Warnings and suggestions. mlidea automatically generates a shadow
pipeline to detect records that degrade model performance [13]. If
such records are detected, mlidea flips their labels in the training
data and re-executes the pipeline with IVM. Attendees receive a
report, highlighting rows with the lowest Shapley values, along
with a provenance-based explanation built by joining problematic
featurized rows, assigned labels, predicted labels, and the initial
human-readable input data. Similarly, attendees will receive reports
for the estimated impact of flipping these labels and provenance-
based explanations on how that changes predictions. These reports
enable quick iterations on source code and labels.
Optimizations. In case of long-running ML model training, mlidea
uses cheap proxy models to estimate the impact of flipping uncer-
tain labels by training them on both the original and updated train-
ing data. The shadow pipeline also uses additional optimizations
like selectively rerunning operations, such as retrieval-augmented
LLM inference, only for predictions that depend on flipped labels.
Interactivity. With mlidea’s warnings and suggestions, attendees
then improve the pipeline iteratively. For example, one of our
pipelines uses expert-designed regular expressions for weak la-
beling. Attendees will use mlidea’s provenance-based explanations
to interactively refine the regular expressions for weak labeling,
and observe in real-time how IVM accelerates this iterative process.

3

Detailed warning
with provenance-
based explanation

1

Actionable suggestions, if possible directly
as suggested code change. Potential fixes
get automatically tested before suggestion.

2

Provenance-based explanation for
the suggested pipeline changes.

3

Figure 3: Attendees receive detailed warnings, actionable
suggestions, and provenance-based explanations generated
by the shadow pipelines.

Shadow pipeline 2: Improving robustness against data qual-
ity problems. This shadow pipeline allows attendees to test and
improve the robustness of ML pipelines against data quality prob-
lems [20] before deployment. For example, in healthcare, a model
using patient data and doctor’s notes may be impacted by typos
made during stressful periods. Robustness can be improved by
applying preprocessing steps like spell-checking to the data.
Warnings and suggestions. mlidea automatically generates shadow
pipelines that corrupt columns of different data types in pre-defined
ways (missing values for categorical columns, random scaling for
numerical columns, and typos for text columns). If robustness is-
sues are detected, mlidea automatically tests potential fixes, such
as missing value imputation, outlier detection, and spell-checking.
Attendees receive a report detailing the impact of corruptions, po-
tential fixes, provenance-based examplanations with samples of the
corrupted and fixed rows, the performance impact, and suggested
source code changes.
Optimizations. To test a large number of different pipeline variants
with different corruptions and fixes, this shadow pipeline selectively
reruns operations like model inference only for rows affected by
corruptions or data cleaning. While data cleaning operations like
spell-checking can be slow, mlidea reuses intermediate results
across shadow pipeline executions for these expensive operations
and only tests them on samples.
Interactivity. Attendeeswill investigate reports generated by mlidea
with warnings, suggestions, detailed explanations, and executable
code snippets. Our demo interface also offers LLM-based function-
ality for automatically integrating suggested code changes into
the original pipeline. Attendees will iteratively refine the pipeline,
re-executing it to address issues while leveraging the IVM.
Shadow pipeline 3: Improving prediction performance on
problematic data slices. This shadow pipeline uses SliceLine [18]
to identify data slices where the ML pipeline underperforms. When
detected, mlidea automatically explores ways to improve perfor-
mance on that slice. For example, in a social media scenario, a
subset of user posts might be in a different language. mlidea will
detect the problematic slice, apply a translation step, and quantify
its impact.

Warnings and suggestions. Attendees receive a detailed report about
the problematic slice (if detected) and the strategies mlidea tried
to address it. One strategy involves prompting external LLMs with
samples from the problematic slice to generate tailored data clean-
ing operations, such as the translation step on foreign-language
posts. To avoid latency issues from heavy reliance on LLMs, mlidea
also uses heuristics to come up with additional potential fixes.
Optimizations. Expensive operations like model inference are only
run on rows from the problematic slice that were modified by po-
tential fixes. Costly operations like LLM calls and translation steps
reuse intermediate results between shadow pipeline executions.
Interactivity. Attendees will investigate warnings with provenance-
based explanations about the problematic slice, along with sugges-
tions and reports on how various improvement strategies affect its
prediction performance. They will also receive provenance-based
explanations of how the strategies transformed the problematic
data. Additionally, attendees get code snippets for promising im-
provements, which they can integrate manually or with the help
of LLM-based functionality, or develop their own fixes based on
mlidea’s reports. As with all shadow pipelines, attendees will ex-
plore extracted and generated query plans and iteratively improve
the pipeline while leveraging IVM.

REFERENCES
[1] Eric Breck, Neoklis Polyzotis, Sudip Roy, Steven Whang, and Martin Zinkevich.

2019. Data Validation for Machine Learning. MLSys (2019).
[2] Zaheer Chothia, John Liagouris, Frank McSherry, and Timothy Roscoe. 2016.

Explaining outputs in modern data analytics. Technical Report. ETH Zurich.
[3] Yeounoh Chung et al. 2019. Slice finder: Automated data slicing for model

validation. ICDE (2019).
[4] GitHub. 2021. GitHub Copilot · Your AI pair programmer. https://copilot.github

.com/.
[5] Stefan Grafberger et al. 2023. Automating and Optimizing Data-Centric What-If

Analyses on Native Machine Learning Pipelines. SIGMOD (2023).
[6] Stefan Grafberger et al. 2024. Towards Interactively Improving ML Data Prepa-

ration Code via" Shadow Pipelines". DEEM workshop @ SIGMOD (2024).
[7] Stefan Grafberger, Paul Groth, Julia Stoyanovich, and Sebastian Schelter. 2022.

Data distribution debugging in machine learning pipelines. VLDBJ (2022).
[8] Stefan Grafberger, Bojan Karlaš, Paul Groth, and Sebastian Schelter. 2023. To-

wards Declarative Systems for Data-Centric ML. DMLR workshop @ ICML (2023).
[9] Grammarly. [n.d.]. Demo. https://demo.grammarly.com/.
[10] Kenneth Holstein et al. 2019. Improving fairness in machine learning systems:

What do industry practitioners need? CHI (2019).
[11] Jetbrains. [n.d.]. Code inspections. https://www.jetbrains.com/help/idea/code-

inspection.html#access-inspections-and-settings.
[12] Ruoxi Jia et al. 2019. Efficient task-specific data valuation for nearest neighbor

algorithms. VLDB (2019).
[13] Bojan Karlaš et al. 2023. Data Debugging with Shapley Importance over Machine

Learning Pipelines. ICLR (2023).
[14] Sanjay Krishnan et al. 2016. ActiveClean: interactive data cleaning for statistical

modeling. VLDB (2016).
[15] Frank McSherry, Derek Gordon Murray, Rebecca Isaacs, and Michael Isard. 2013.

Differential Dataflow. CIDR (2013).
[16] Neoklis Polyzotis et al. 2018. Data lifecycle challenges in production machine

learning: a survey. SIGMOD Record (2018).
[17] Romila Pradhan, Jiongli Zhu, Boris Glavic, and Babak Salimi. 2022. Interpretable

data-based explanations for fairness debugging. SIGMOD (2022).
[18] Svetlana Sagadeeva and Matthias Boehm. 2021. Sliceline: Fast, linear-algebra-

based slice finding for ml model debugging. SIGMOD (2021).
[19] Sebastian Schelter et al. 2018. On challenges in machine learning model man-

agement. IEEE Data Engineering Bulletin (2018).
[20] Sebastian Schelter et al. 2021. JENGA - A Framework to Study the Impact of

Data Errors on the Predictions of Machine Learning Models. EDBT (2021).
[21] Sebastian Schelter, Stefan Grafberger, Shubha Guha, Bojan Karlaš, and Ce Zhang.

2023. Proactively Screening ML Pipelines with ArgusEyes. SIGMOD (2023).
[22] Julia Stoyanovich, Bill Howe, Serge Abiteboul, H.V. Jagadish, and Sebastian

Schelter. 2022. Responsible Data Management. Commun. ACM (2022).

4

https://copilot.github.com/
https://copilot.github.com/
https://demo.grammarly.com/
https://www.jetbrains.com/help/idea/code-inspection.html#access-inspections-and-settings
https://www.jetbrains.com/help/idea/code-inspection.html#access-inspections-and-settings

	Abstract
	1 Introduction
	2 System Overview
	3 Demonstration Details
	References

