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Abstract—Addressing data errors such as wrong, missing,
noisy, biased, or out-of-distribution values has become a crucial
part of the machine learning (ML) development lifecycle. Un-
fortunately, traditional approaches have relied either on treating
the symptom by refining the model architecture, or on improving
data quality by repairing incorrect values regardless of their
significance to the downstream model. Both strategies end up
tackling the problem in isolation, and disregard the structure
of modern ML pipelines, which involve a series of steps for
data preprocessing, model training, and prediction processing.
Consequently, they miss the opportunity to consider how different
data errors propagate through the pipeline and how they impact
its ability to perform downstream tasks. In recent years, the
research community has made significant strides towards more
holistic approaches for identifying the most harmful data errors,
performing the most beneficial repairs, and ensuring reliable
performance even if some data errors remain present. This
tutorial will survey some prominent work published in this
space and showcase several tools that have been developed. By
combining theoretical foundations with practical demonstrations,
attendees will gain actionable strategies to diagnose and mitigate
data quality issues, improving the reliability, fairness, and trans-
parency of ML systems in real-world settings.

I. INTRODUCTION

ML systems are increasingly deployed in high-stakes do-
mains such as healthcare, finance, and law enforcement, where
their decisions profoundly impact individuals and commu-
nities. To ensure trust in these systems, it is essential to
focus on their accuracy, fairness, robustness, and reliability
[9], [25], [46], [73]. Developing trustworthy ML systems
involves navigating a complex multi-stage pipeline—spanning
data preparation, model training, predictive queries, and eval-
uation—where failures at any stage can lead to significant
performance degradation. A key observation is that many such
failures are directly caused by data errors, including miss-
ing, incorrect, invalid, biased, and out-of-distribution values.
These errors propagate through ML pipelines, compromising
outcomes even when models and algorithms are otherwise
well-refined. Debugging and mitigating these errors consumes
considerable time and effort for developers, highlighting the
need to systematically address data quality issues.

Existing methods for addressing bias in ML models primar-
ily focus on algorithm-specific solutions, which often treat the
symptoms of poor data quality rather than tackling its root
causes [4], [47]. Traditional data cleaning techniques [34],
[37], [38], [44], [64] produce a single “best-guess” version
of cleaned data but offer no guarantees of unbiasedness or

representativeness. Similarly, explainability methods, while
valuable for interpreting model predictions, often analyze
models in isolation and overlook the broader ML pipeline,
where errors from upstream stages can propagate and am-
plify. In real-world ML applications, training data is typically
derived from multiple heterogeneous source datasets through
complex ML pipelines [5], [80]. These pipelines integrate,
transform, and encode raw data into features, exacerbating data
quality challenges such as inconsistencies, noise, and bias. To
overcome these limitations, a holistic, data-centric approach
that scrutinizes and refines the entire ML pipeline is necessary
to ensure robust, fair, and reliable systems in deployment.

Addressing these challenges requires a shift in perspec-
tive: understanding ML pipelines as interconnected workflows
where data quality issues must be tackled holistically across
all stages. This tutorial focuses on recent work that high-
lights the importance of quantifying task-specific data con-
tributions, such as Shapley values for identifying problematic
data points [19], [29], reasoning about end-to-end pipelines
to trace error propagation [21], [22], [68], and providing
quality guarantees to enable robust learning under uncertainty,
incomplete data, and distributional inconsistencies [51], [58],
[89]. These techniques collectively provide the foundation for
understanding how data errors propagate through ML pipelines
and how targeted interventions can mitigate their downstream
impact.

This tutorial equips participants with actionable tools to
identify, debug, and reason about data quality challenges,
while enhancing accuracy, fairness, reliability, and robustness
in ML systems. Structured into two 90-minute parts, the first
session will introduce methods for identifying data errors, de-
bugging ML pipelines, and learning from imperfect data. The
second hands-on session will allow attendees to apply practical
tools to real-world tasks, such as prioritizing problematic data
points, tracing error propagation, and implementing robust
learning strategies. By combining these perspectives, partic-
ipants will gain a holistic understanding of how to address
data quality issues, enabling them to build robust, transparent,
and trustworthy ML systems for real-world challenges.

II. OUTLINE OF THE SURVEY PART

In the first part of the tutorial, we will present a survey
of relevant works covering the notion of data importance as
a framework for identifying data errors, the application of
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Fig. 1: Data errors are often the root cause of many quality issues in modern ML pipelines. Handling such errors as they
traverse complex pipeline steps is a key challenge for practitioners. This tutorial covers some significant recent developments,
presents novel tools, and explores opportunities for future work in this space.

these methods for debugging end-to-end ML pipelines, and
the approaches for providing quality guarantees despite the
presence of data errors.

A. Data Importance for Data Error Detection

Repairing data is often a very costly process requiring a
lot of human effort. Therefore, identifying data with the most
significant negative impact on the downstream ML model
could allow practitioners to prioritize their efforts. The general
strategy pursued by recent approaches is to define some
method of measuring the importance of individual units of data
with respect to their impact on the downstream ML model.

Quantifying Data Importance. We will start by covering a
simple way to measure data importance using the leave-one-
out (LOO) score. We will cover several generalizations of
this approach including the Shapley value [19], [29], Banzhaf
value [76], Beta Shapley [39], and others. We will also
cover gradient-based methods [36], [37], as well as some
uncertainty-based methods [55], [59]. Finally, we will cover
methods geared toward specific aspects of model quality such
as fairness [62], as well as methods specialized for large
language models (LLMs) [43].

Takeaway: Attendees will get acquainted with the notion of
data importance in the context of data debugging, as well as
various methods for quantifying it. They will also develop a
sense of the strengths and weaknesses of various methods,
allowing them to reason about selecting the best method for
their own data debugging scenario.

Overcoming Computational Challenges. Despite their effec-
tiveness, many methods for quantifying data importance come
with enormous computational costs, limiting their applicability
in real-world data debugging tasks [30]. For example, the
Shapley value involves a sum over exponentially many subsets,
making it intractable in practical settings. In this part, we will
explore approaches for speeding up the computation, including
Monte Carlo methods [19], using the K-nearest neighbors as
a proxy model [28], and model-based estimation [13].

Takeaway: This part will introduce the attendees to certain
algorithmic approaches for making data importance compu-
tationally efficient by leveraging various tools well-known to

the data management community. We hope that our overview
will inspire some of the attendees to make future contributions.

B. Data Debugging in ML Pipelines

The discussed techniques are designed for a static, pre-
processed training dataset of a given model. However, this
assumption ignores the circumstances in real-world ML appli-
cations, where models are trained on data that is preprocessed
as part of an ML pipeline [5], [33], [40], [56], [63], [69],
[71], [79]–[81]. Such a pipeline typically accesses several
heterogeneous input datasets, integrates them and encodes
them into features to produce the actual training data for the
model (Figure 1). This raises challenges for debugging – data
errors should be identified in the source data of a pipeline,
while existing debugging methods are designed for already
preprocessed training data (the output of the preprocessing
step). The second part of our survey will bring these ML
pipelines into play.

Libraries and Systems for ML pipelines. We will start by
giving an overview of the implementation of ML pipelines,
which typically combine several systems and libraries. Ex-
amples from the open source space include combinations
of Pandas [77] with scikit-learn [57], [70], Spark [82]
with SparkML [48], Tensorflow Transform [5] with Apache
Beam [2], and systems such as Apache SystemDS [8], MLflow
Recipes [14] from Databricks or Metaflow [49] from Netflix.
Furthermore, we will cover proprietary pipeline abstractions
in commercial cloud services such as Amazon SageMaker [3],
Microsoft Azure ML [52], or Google’s Vertex AI [20].

Takeaway: Attendees will learn about shared design patterns
and abstractions across various libraries, as well as their
shortcomings which make debugging more difficult.

Characteristics of Real-World ML Pipelines. Next, we will
summarize two large-scale empirical studies on the character-
istics of real-world ML pipelines encountered in large compa-
nies, code repositories and cloud platforms. In particular, we
will focus on a study of thousands of production ML pipelines
at Google [80], and on insights from the analysis of millions of
GitHub notebooks and ML.Net pipelines from Microsoft [63].



Takeaway: Attendees will learn about detailed usage statistics
for common libraries and operators in these pipelines, and
will be confronted with findings that that contradict conven-
tional wisdom, e.g., that data ingestion, data preprocessing
and model analysis account for higher compute costs than
model training, or that a large proportion of pipelines train
traditional non-neural ML models.

Inspecting and Debugging Data in ML pipelines. Finally, we
will discuss techniques to inspect pipelines and debug their
input and output data. We will start by reviewing techniques
for the basic analysis of ML pipelines [22], [53], [60]. Sub-
sequently, we will dive into work on provenance-based data
debugging of ML pipelines and discuss approaches which
leverage fine-grained provenance information [24] to reason
about the input and output data of a pipeline. Examples include
a continuous integration system to screen pipelines for issues
like data leakage and label errors [68], techniques to efficiently
compute data importance over pipelines of various shapes [33],
or the identification of training data points whose removal
would fix user complaints in prediction queries [18], [79].

Takeaway: Attendees will learn details about different pipeline
representations, the efficient computation of fine-grained data
provenance for a pipeline, and how this enables the adaptation
of existing data debugging techniques to the pipeline’s source
data. We will furthermore highlight the connection to related
areas such as incremental view maintenance.

C. Learning from Uncertain and Incomplete Data

Uncertain and incomplete data, arising from data errors,
missing values, and biases, are pervasive in real-world ML
applications. These imperfections distort the underlying data
distribution, compromising the fairness, accuracy, and gen-
eralizability of ML models. Traditional approaches, such
as fairness-aware learning, data cleaning techniques [10],
[32], [44], [64], [83], [84], and methods addressing selection
bias [12], [15], [26], [41], [65] or labeling errors [31], [85],
[87], often fail to recover a representative dataset, limiting
their effectiveness in practice. Furthermore, robust model
learning methods aim to ensure resilience against adversarial
perturbations [27], [66], [72], [86] and distributional shifts [6],
[54], but rely on restrictive assumptions that rarely hold.
These challenges are exacerbated in complex ML pipelines,
where data imperfections propagate and interact, amplifying
performance degradation.

Quantifying and Handling Incomplete Data. Recent advance-
ments have shifted focus from perfecting data to reasoning
under its inherent uncertainty and incompleteness. Early con-
tributions extended nearest neighbor classifiers to handle in-
complete information, ensuring predictions align with the most
reliable available data [35]. The dataset multiplicity problem
formalized the challenges posed by unreliable or conflicting
datasets, emphasizing the need to quantify uncertainty and
its impact on predictions [51]. To address noisy and incom-
plete inputs, frameworks have emerged that provide statistical
guarantees by constructing certain and approximately certain

models, ensuring robust performance in tasks like linear re-
gression and support vector machines [88]. Another critical
development is the possible worlds framework, which trains
models across multiple plausible interpretations of uncertain
data, enhancing resilience in ambiguous settings [89]. Fur-
ther, methods addressing fairness concerns, such as consistent
range approximation, certify that predictive models remain
unbiased despite biases in training data [90]. Robustness to
programmable data biases has also been explored, where
decision trees are evaluated over biased datasets to ensure
consistent predictions and fairness [50].
Takeaway. As part of this overview, attendees will learn about
the limitations of traditional approaches for cleaning, debias-
ing, and learning robust models. The tutorial will highlight
recent progress in learning from incomplete, uncertain, and
inconsistent data, as well as methods for propagating the
impact of these imperfections on ML models. We will also
cover applications for quantifying robustness and improving
data cleaning. As a result, participants will gain practical
insights into building resilient models that can effectively learn
and perform under real-world data imperfections.

D. Open Challenges & Conclusion

To conclude the survey part, we will highlight some prob-
lems that we believe to be relevant to this space but have
received little attention from the research community. Specifi-
cally, in the era of AI-assisted programming, there is a question
of how the discipline of data debugging will be impacted [7],
[17], [67], [75]. Additionally, there is the question of how data
debugging as a part of the broader AI development lifecycle
will be impacted by the recently introduced AI-regulation such
as the EU AI Act, GDPR, SCPA, etc. [1], [11], [16], [74]
Takeaway: Attendees will get an overview of opportunities for
future research directions in the space of data debugging.

III. OUTLINE OF THE HANDS-ON SESSION

The hands-on session is divided into two parts, each of
which is implemented in a separate Google Colab notebook.

A. Tools for Identifying Data Errors, Computing Pipeline
Provenance, and Quantifying Uncertainty in Model Training
and Predictions

Structure. The hands-on session will start with a one-hour
introduction to various tools for identifying data errors, com-
puting pipeline provenance, and quantifying uncertainty in
model training and predictions. This part will leverage syn-
thetically generated data from a hiring scenario, in particular
a set of recommendation letters together with multiple tables
of side data such as demographic information and social media
details of the applicants. The corresponding ML use case
will be to train a classifier to predict the sentiment of a
recommendation letter. We will walk attendees through various
examples of software tools for methods discussed in the survey
such as kNN-Shapley [28], Gopher [62], [91], mlinspect [22],
[23], [68], Datascope [33], and Zorro [89]. We will introduce
the APIs of these tools, provide code snippets with usage



examples, as well as a set short 5-minute programmming
tasks for attendees, to encourage them to explore the tools
themselves.
Content. We will start by showcasing how to identify and
“recover” from data errors via data debugging. The data for
this part consists of a single preprocessed table as training data
without any complex features. We will inject synthetic noise
such as label errors into the data and show how this negatively
impacts the downstream quality metrics of the classifier. We
will apply tools from Section II-A to identify impactful tuples
with data errors, provide them to an “oracle“ cleaning function
and show how such prioritized cleaning improves quality
metrics. Next, we will introduce ML pipelines for data prepro-
cessing into the scenario (as discussed in Section II-B), which
include additional side tables, and preprocess the data with a
complex operations such as (fuzzy) joins, filters, projections
with user-defined functions, as well as costly feature encoders.
We will show how to compute fine-grained data provenance for
the pipeline outputs and identify previously injected data errors
in the source data of the pipeline based on the provenance
information and the previously introduced tools. We conclude
our tool introduction with scenarios discussed in Section II-C,
where data quality issues cannot be fully resolved through
cleaning. Here, we demonstrate how to reason about and
quantify uncertainty in model training and predictions. Using
a subset of the data, we inject synthetic missing attributes and
uncertain labels to simulate real-world imperfections. We will
focus on Zorro [89], a framework that symbolically propagates
uncertainty due to missing values through the training process,
allowing us to compute prediction ranges for model outputs.
Attendees will observe how incomplete and uncertain data
impact prediction reliability and robustness and will visualize
the resulting uncertainty ranges for specific test points.

B. Data Debugging Challenge

In the final half hour of the hands-on session, we will
present attendees with a challenging data cleaning task, in-
spired by recent benchmarks for data-centric AI develop-
ment [45]. The attendees will be given access to a prepared
training dataset with data errors unknown to them, and access
to classifier with a validation set. Moreover, they will be given
an “oracle“ function, which allows them to specify a limited
set of training tuples to clean (by supplying their identifiers).
This oracle function will then evaluate the classifier (retrained
on the partially cleaned data) on a hidden test set, and report
the metric on this test set to the attendee. This will allow
attendees to test their previously acquired knowledge about the
data debugging tools in a challenging example scenario. We
additionally plan to implement a live “leaderboard” to show-
case which submissions introduced the highest improvements.

IV. PREREQUISITES & CONTEXT

Prerequisites. The target audience for our survey are re-
searchers and practitioners with an interest in the intersection
of data management, machine learning, and data quality. We
intend to cover both theoretical aspects as well as practical

aspects related to the design and deployment of real-world
ML applications to appeal to a large audience. The survey
assumes a very basic understanding of machine learning.
For the hands-on session, attendees will need a laptop with
internet access, and basic Python and data wrangling skills.
We plan to implement the tutorial and tasks in Google Colab
notebooks to avoid needing any local software installation or
data downloads.
Difference with Previous Tutorials. This tutorial will be held
for the first time and is custom-designed for the ICDE audi-
ence. However, this tutorial shares some overlap with several
tutorials presented in recent years at data management venues,
with key differences that we highlight here. The tutorial on
“Data Collection and Quality Challenges for Deep Learning”
at VLDB’20 [78] covered a topic similar to ours. However, the
field has produced substantial developments over the past years
in terms of methods and tools which we will present in our
tutorial. The tutorial “Explainable AI: Foundations, Applica-
tions, Opportunities for Data Management Research” [61] at
SIGMOD’22 also covered data importance methods, among
other topics, but they focused on the context of model in-
terpretability, as opposed to data debugging. Similarly, the
tutorial “Applications and Computation of the Shapley Value
in Databases and Machine Learning” at SIGMOD’24 [42]
focuses entirely on the Shapley value and its various applica-
tions, while in our case this is presented as one of the various
tools available for identifying data errors in ML pipelines.
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