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Abstract
With the growing importance of machine learning (ML) algorithms for practical applications,
reducing data quality problems in ML pipelines has become a major focus of research. In
many cases missing values can break data pipelines which makes completeness one of the most
impactful data quality challenges. Current missing value imputation methods are focusing
on numerical or categorical data and can be difficult to scale to datasets with millions of
rows. We release DataWig, a robust and scalable approach for missing value imputation
that can be applied to tables with heterogeneous data types, including unstructured text.
DataWig combines deep learning feature extractors with automatic hyperparameter tuning.
This enables users without a machine learning background, such as data engineers, to
impute missing values with minimal effort in tables with more heterogeneous data types
than supported in existing libraries, while requiring less glue code for feature engineering
and offering more flexible modelling options. We demonstrate that DataWig compares
favourably to existing imputation packages. Source code, documentation, and unit tests for
this package are available at: github.com/awslabs/datawig

Keywords: missing value imputation, deep learning, heterogeneous data

1. Introduction

Machine learning (ML) algorithms have become a standard technology in production use cases.
One of the main reasons for suboptimal predictive performance of such systems is low data
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Data Type Featurizers Loss

Numerical Normalization
Neural Network Regression

Categorical Embeddings Softmax

Text Bag-of-Words
LSTM N/A

table = pandas.read_csv(’products.csv’)
missing = table[table[’color’]. isnull ()]

# instantiate model and train imputer
model = SimpleImputer(

input_columns =[’description ’,
’product_type ’,
’size’],

output_columns =[’color’])
.fit(table)

# impute missing values
imputed = model.predict(missing)

Figure 1: Left: Available featurizers and loss functions for different data types in DataWig.
Right: Application example of DataWig API for the use case shown in Figure 2.

quality and one of the most frequent data quality problems are missing values. Imputation
of missing values can help to increase data quality by filling gaps in training data. However
automated and scalable imputations for tables with heterogeneous data types including
free form text fields remains challenging. Here we present DataWig, a software package
that aims at minimizing the effort required for missing value imputation in heterogeneous
data sources. Most research in the field of imputation focuses on imputing missing values
in matrices, that is imputation of numerical values from other numerical values (Mayer
et al., 2019). Popular approaches include k-nearest neighbors (KNN) (Batista and Monard,
2003), multivariate imputation by chained equations (MICE) (Little and Rubin, 2002),
matrix factorization (Koren et al., 2009; Mazumder et al., 2010; Troyanskaya et al., 2001) or
deep learning methods (Gondara and Wang, 2017; Zhang et al., 2018; Mattei and Frellsen,
2019). While some recent work addresses imputation for more heterogeneous data types
(Stekhoven and Bühlmann, 2012; Yoon et al., 2018; Nazabal et al., 2018), heterogeneous in
those studies refers to binary, ordinal or categorical variables, which can be easily transformed
into numerical representations. In practice also these simple transformations require glue
code that can be difficult to adapt and maintain in a production setting. Writing such feature
extraction code is out of scope for many engineers and can incur considerable technical debt
on any data pipeline (Sculley et al., 2015; Schelter et al., 2018). We release DataWig to
complement existing imputation libraries by an imputation solution for tables that contain
not only numerical values or categorical values, but also more generic data types such as
unstructured text. Extending the functionality of previous packages, DataWig’s imputation
automatically selects from a number of feature extractors, including deep learning techniques,
and learns all parameters in an end-to-end fashion using the symbolic API of Apache mxnet
to ensure efficient execution on both CPUs and GPUs.

2. Imputation Model

The imputation model in DataWig is inspired by established approaches (van Buuren,
2018) and follows the approach of MICE, also referred to as fully conditional specification:
for each to-be-imputed column (referred to as output column), the user can specify the
columns which might contain useful information for imputation (referred to as input columns).
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scenario, our system’s simple API (presented in Section 4) is also
bene�cial for other use cases: users without any machine learning
experience or coding skills who want to run simple classi�cation
experiments on non-numerical data can leverage the system as long
as they can export their data from an Excel sheet and specify the
target column.

In order to demonstrate the scalability and performance of our
approach, we present experiments on samples of a large product
catalog and on public datasets extracted from Wikipedia. In the
experiments on the product catalog, we impute missing product
attribute values for a variety of product types and attributes. The
sizes of the data sets sampled from the product catalog are between
several 1,000 rows and several million rows, which is between one
to four orders of magnitude larger than data sets in previous work
on missing value imputation on numerical data [10]. We evaluate
the imputations on product data with very di�erent languages
(English and Japanese), and �nd that our system is able to deal with
di�erent languages without any language-speci�c preprocessing,
such as tokenization. In the Wikipedia experiments, we impute
missing infobox attributes from the article abstracts for a number
of infobox properties.

A sketch of the proposed approach is shown in Figure 1. We
will use the running example of imputing missing color attributes
for products in a retail catalog. Our system operates on a table
with non-numerical data, where the column to be imputed is the
color attribute and the columns considered as input data for the
imputation are other product attribute columns such as product
description. The proposed approach then trains a machine learn-
ing model for each to be imputed column that learns to predict the
observed values of the to be imputed column from the remaining
columns (or a subset thereof). Each input column of the system is
fed into a featurizer component that processes sequential data (such
as unstructured text) or categorical data. In the case of the color
attribute, the to be imputed column is modeled as a categorical
variable that is predicted from the concatenation of all featurizer
outputs.

The reason we propose this imputation model is that in an ex-
tensive literature review we found that the topic of imputation for
non-numerical data beyond rule-based systems was not covered
very well. There exists a lot of work on imputation [30], and on
modeling non-numerical data, but to the best of our knowledge
there is no work on end-to-end systems that learn how to extract
features and impute missing values on non-numerical data at scale.
This paper aims at �lling this gap by providing the following con-
tributions:

• Scalable deep learning for imputation. We present an impu-
tation approach that is based on state of the art deep learning
models (Section 3).
• High precision imputations. In extensive experiments on pub-

lic and private real-world datasets, we compare our imputation
approach against standard imputation baselines and observe up
to 100-fold improvements of imputation quality (Section 6).
• Language-agnostic text feature extraction. Our approach op-

erates on the character level and can impute with high precision
and recall independent of the language present in a data source
(Section 5, Section 6).

Product
Type Description Size Color

Shoe Ideal for running … 12UK Black

SDCards Best SDCard ever … 8GB Blue

Dress This yellow dress … M ?

Feature Columns Label Column

Character 
Sequence

One Hot 
Encoder

Embedding LSTM or 
n-gram hashing

Feature Concatenation

Imputation

The first step in the model is to transform for each row the string data of each column c into a112

numerical representation xc. We use different encoders for different non-numerical data types and113

distinguish between categorical and sequential data. For categorical data the numerical representation114

xc � {1, 2, . . . , Mc} of the string data in column c was simply the index of the value histogram115

of size Mc; for notational simplicity also these scalar variables will be denoted as vector xc in the116

following. For sequential data, the numerical representation xc � {0, 1, 2, . . . , Ac}Sc is a vector of117

length Sc, where Sc denotes the length of the sequence or string in column c and Ac denotes the118

size of the set of all characters observed in column c. The data types were determined using heuristics.119

In the data sets used in the experiments the data types of the columns were easy to separate into120

free text fields (product description, bullet points, item name) and categorical variables121

(e.g. color, brand, size, ...). If the data types are not known upfront, heuristics based on the122

distribution of values in a column can be used [? ].123

Once the the non-numerical data is encoded into their respective numerical representation, a column124

specific feature extraction mapping �c(xk) � RD
c is computed, where Dk denotes the dimensionality125

for a latent variable associated with column c. We considered three different types of featurizers126

�c(.). For categorical data we use a one-hot encoded embedding (as known from word embeddings).127

For columns c with sequential string data we consider two different possibilities for �c(xc): an128

n-gram representation or a character-based embedding using a Long-Short-Term-Memory (LSTM)129

recurrent neural network [? ] TODO: CITATION. For the character n-gram representation, �c(x
c) is130

a hashing function that maps each n-gram, where n � {1, . . . , 5}, in the character sequence xc to131

a Dc dimensional vector; here Dc denotes here the number of hash buckets. Note that the hashing132

featurizer is a stateless component that does not require any training, whereas the other two types of133

feature maps contain parameters that are learned using backpropagation.134

For the case of categorical embeddings, we use a standard linear embedding fed into one fully135

connected layer. The hyperparameter for this featurizer was a single one and used to set both the136

embedding dimensionality as well as the number of hidden units of the output layer. In the LSTM137

case, we featurize xc by iterating an LSTM through the sequence of characters of xc
i that are each138

represented as continuous vector via a character embedding. The sequence of characters xc is then139

mapped to a sequence of states h(c, 1), . . . ,h(c,Sc) and we take the last state h(c,Sc), mapped through140

a fully connected layer as the featurization of xc. The hyperparameters of each LSTM featurizer are141

then the number of layers, the number of hidden units of the LSTM cell and the dimension of the142

characters embedding ci and the number of hidden units of the final fully connected output layer of143

the LSTM featurizer.144

Finally all feature vectors �c(x
c) are concatenated into one feature vector x̃ � RD where D =

�
Dc145

is the sum over all latent dimensions Dc. We will refer to the numerical representation of the values146

in the to-be-imputed column as y � {1, 2, . . . , Dy}, as in standard supervised learning settings. The147

symbols of the target columns use the same encoding as the aforementioned categorical variables.148

After the featurization x̃ of input or feature columns and the encoding y of the to-be-imputed149

column we can cast the imputation problem as a supervised problem by learning to predict the label150

distribution of y from x̃.151

Imputation is then performed by modeling p(y|x̃, �), the probability over all observed values or152

classes of y given an input or feature vector x̃ with some learned parameters �. The probability153

p(y|x̃, �) is modeled, as154

p(y|x̃, �) = softmax [W x̃ + b] (1)

where � = (W, z, b) are parameters to learn with W � RDy�D, b � RD
y and z is a vector containing155

all parameters of all learned column featurizers �c. Finally, softmax(q) denotes the elementwise156

softmax function expq�
j expqj

where qj is the j element of a vector q.157

The parameters � are learned by minimizing the cross-entropy loss between the predicted distribution158

and the observed labels y, e.g. by taking159

� = arg min
�

N�

1

Dy�

1

�log(p(y|x̃, �))�onehot(y) (2)

where p(y|x̃, �)) � RDy denotes the output of the model and N is the number of rows for which160

a value was observed in the target column corresponding to y. We use one-hot(y) � {0, 1}Dy to161

4

The first step in the model is to transform for each row the string data of each column c into a112

numerical representation xc. We use different encoders for different non-numerical data types and113

distinguish between categorical and sequential data. For categorical data the numerical representation114

xc � {1, 2, . . . , Mc} of the string data in column c was simply the index of the value histogram115

of size Mc; for notational simplicity also these scalar variables will be denoted as vector xc in the116

following. For sequential data, the numerical representation xc � {0, 1, 2, . . . , Ac}Sc is a vector of117

length Sc, where Sc denotes the length of the sequence or string in column c and Ac denotes the118

size of the set of all characters observed in column c. The data types were determined using heuristics.119

In the data sets used in the experiments the data types of the columns were easy to separate into120

free text fields (product description, bullet points, item name) and categorical variables121

(e.g. color, brand, size, ...). If the data types are not known upfront, heuristics based on the122

distribution of values in a column can be used [? ].123

Once the the non-numerical data is encoded into their respective numerical representation, a column124

specific feature extraction mapping �c(xk) � RD
c is computed, where Dk denotes the dimensionality125

for a latent variable associated with column c. We considered three different types of featurizers126

�c(.). For categorical data we use a one-hot encoded embedding (as known from word embeddings).127

For columns c with sequential string data we consider two different possibilities for �c(xc): an128

n-gram representation or a character-based embedding using a Long-Short-Term-Memory (LSTM)129

recurrent neural network [? ] TODO: CITATION. For the character n-gram representation, �c(x
c) is130

a hashing function that maps each n-gram, where n � {1, . . . , 5}, in the character sequence xc to131

a Dc dimensional vector; here Dc denotes here the number of hash buckets. Note that the hashing132

featurizer is a stateless component that does not require any training, whereas the other two types of133

feature maps contain parameters that are learned using backpropagation.134

For the case of categorical embeddings, we use a standard linear embedding fed into one fully135

connected layer. The hyperparameter for this featurizer was a single one and used to set both the136

embedding dimensionality as well as the number of hidden units of the output layer. In the LSTM137

case, we featurize xc by iterating an LSTM through the sequence of characters of xc
i that are each138

represented as continuous vector via a character embedding. The sequence of characters xc is then139

mapped to a sequence of states h(c, 1), . . . ,h(c,Sc) and we take the last state h(c,Sc), mapped through140

a fully connected layer as the featurization of xc. The hyperparameters of each LSTM featurizer are141

then the number of layers, the number of hidden units of the LSTM cell and the dimension of the142

characters embedding ci and the number of hidden units of the final fully connected output layer of143

the LSTM featurizer.144

Finally all feature vectors �c(x
c) are concatenated into one feature vector x̃ � RD where D =

�
Dc145

is the sum over all latent dimensions Dc. We will refer to the numerical representation of the values146

in the to-be-imputed column as y � {1, 2, . . . , Dy}, as in standard supervised learning settings. The147

symbols of the target columns use the same encoding as the aforementioned categorical variables.148

After the featurization x̃ of input or feature columns and the encoding y of the to-be-imputed149

column we can cast the imputation problem as a supervised problem by learning to predict the label150

distribution of y from x̃.151

Imputation is then performed by modeling p(y|x̃, �), the probability over all observed values or152

classes of y given an input or feature vector x̃ with some learned parameters �. The probability153

p(y|x̃, �) is modeled, as154

p(y|x̃, �) = softmax [W x̃ + b] (1)

where � = (W, z, b) are parameters to learn with W � RDy�D, b � RD
y and z is a vector containing155

all parameters of all learned column featurizers �c. Finally, softmax(q) denotes the elementwise156

softmax function expq�
j expqj

where qj is the j element of a vector q.157

The parameters � are learned by minimizing the cross-entropy loss between the predicted distribution158

and the observed labels y, e.g. by taking159

� = arg min
�

N�

1

Dy�

1

�log(p(y|x̃, �))�onehot(y) (2)

where p(y|x̃, �)) � RDy denotes the output of the model and N is the number of rows for which160

a value was observed in the target column corresponding to y. We use one-hot(y) � {0, 1}Dy to161

4

The first step in the model is to transform for each row the string data of each column c into a112

numerical representation xc. We use different encoders for different non-numerical data types and113

distinguish between categorical and sequential data. For categorical data the numerical representation114

xc � {1, 2, . . . , Mc} of the string data in column c was simply the index of the value histogram115

of size Mc; for notational simplicity also these scalar variables will be denoted as vector xc in the116

following. For sequential data, the numerical representation xc � {0, 1, 2, . . . , Ac}Sc is a vector of117

length Sc, where Sc denotes the length of the sequence or string in column c and Ac denotes the118

size of the set of all characters observed in column c. The data types were determined using heuristics.119

In the data sets used in the experiments the data types of the columns were easy to separate into120

free text fields (product description, bullet points, item name) and categorical variables121

(e.g. color, brand, size, ...). If the data types are not known upfront, heuristics based on the122

distribution of values in a column can be used [? ].123

Once the the non-numerical data is encoded into their respective numerical representation, a column124

specific feature extraction mapping �c(xk) � RD
c is computed, where Dk denotes the dimensionality125

for a latent variable associated with column c. We considered three different types of featurizers126

�c(.). For categorical data we use a one-hot encoded embedding (as known from word embeddings).127

For columns c with sequential string data we consider two different possibilities for �c(xc): an128

n-gram representation or a character-based embedding using a Long-Short-Term-Memory (LSTM)129

recurrent neural network [? ] TODO: CITATION. For the character n-gram representation, �c(x
c) is130

a hashing function that maps each n-gram, where n � {1, . . . , 5}, in the character sequence xc to131

a Dc dimensional vector; here Dc denotes here the number of hash buckets. Note that the hashing132

featurizer is a stateless component that does not require any training, whereas the other two types of133

feature maps contain parameters that are learned using backpropagation.134

For the case of categorical embeddings, we use a standard linear embedding fed into one fully135

connected layer. The hyperparameter for this featurizer was a single one and used to set both the136

embedding dimensionality as well as the number of hidden units of the output layer. In the LSTM137

case, we featurize xc by iterating an LSTM through the sequence of characters of xc
i that are each138

represented as continuous vector via a character embedding. The sequence of characters xc is then139

mapped to a sequence of states h(c, 1), . . . ,h(c,Sc) and we take the last state h(c,Sc), mapped through140

a fully connected layer as the featurization of xc. The hyperparameters of each LSTM featurizer are141

then the number of layers, the number of hidden units of the LSTM cell and the dimension of the142

characters embedding ci and the number of hidden units of the final fully connected output layer of143

the LSTM featurizer.144

Finally all feature vectors �c(x
c) are concatenated into one feature vector x̃ � RD where D =

�
Dc145

is the sum over all latent dimensions Dc. We will refer to the numerical representation of the values146

in the to-be-imputed column as y � {1, 2, . . . , Dy}, as in standard supervised learning settings. The147

symbols of the target columns use the same encoding as the aforementioned categorical variables.148

After the featurization x̃ of input or feature columns and the encoding y of the to-be-imputed149

column we can cast the imputation problem as a supervised problem by learning to predict the label150

distribution of y from x̃.151

Imputation is then performed by modeling p(y|x̃, �), the probability over all observed values or152

classes of y given an input or feature vector x̃ with some learned parameters �. The probability153

p(y|x̃, �) is modeled, as154

p(y|x̃, �) = softmax [W x̃ + b] (1)

where � = (W, z, b) are parameters to learn with W � RDy�D, b � RD
y and z is a vector containing155

all parameters of all learned column featurizers �c. Finally, softmax(q) denotes the elementwise156

softmax function expq�
j expqj

where qj is the j element of a vector q.157

The parameters � are learned by minimizing the cross-entropy loss between the predicted distribution158

and the observed labels y, e.g. by taking159

� = arg min
�

N�

1

Dy�

1

�log(p(y|x̃, �))�onehot(y) (2)

where p(y|x̃, �)) � RDy denotes the output of the model and N is the number of rows for which160

a value was observed in the target column corresponding to y. We use one-hot(y) � {0, 1}Dy to161

4

The first step in the model is to transform for each row the string data of each column c into a112

numerical representation xc. We use different encoders for different non-numerical data types and113

distinguish between categorical and sequential data. For categorical data the numerical representation114

xc � {1, 2, . . . , Mc} of the string data in column c was simply the index of the value histogram115

of size Mc; for notational simplicity also these scalar variables will be denoted as vector xc in the116

following. For sequential data, the numerical representation xc � {0, 1, 2, . . . , Ac}Sc is a vector of117

length Sc, where Sc denotes the length of the sequence or string in column c and Ac denotes the118

size of the set of all characters observed in column c. The data types were determined using heuristics.119

In the data sets used in the experiments the data types of the columns were easy to separate into120

free text fields (product description, bullet points, item name) and categorical variables121

(e.g. color, brand, size, ...). If the data types are not known upfront, heuristics based on the122

distribution of values in a column can be used [? ].123

Once the the non-numerical data is encoded into their respective numerical representation, a column124

specific feature extraction mapping �c(xk) � RD
c is computed, where Dk denotes the dimensionality125

for a latent variable associated with column c. We considered three different types of featurizers126

�c(.). For categorical data we use a one-hot encoded embedding (as known from word embeddings).127

For columns c with sequential string data we consider two different possibilities for �c(xc): an128

n-gram representation or a character-based embedding using a Long-Short-Term-Memory (LSTM)129

recurrent neural network [? ] TODO: CITATION. For the character n-gram representation, �c(x
c) is130

a hashing function that maps each n-gram, where n � {1, . . . , 5}, in the character sequence xc to131

a Dc dimensional vector; here Dc denotes here the number of hash buckets. Note that the hashing132

featurizer is a stateless component that does not require any training, whereas the other two types of133

feature maps contain parameters that are learned using backpropagation.134

For the case of categorical embeddings, we use a standard linear embedding fed into one fully135

connected layer. The hyperparameter for this featurizer was a single one and used to set both the136

embedding dimensionality as well as the number of hidden units of the output layer. In the LSTM137

case, we featurize xc by iterating an LSTM through the sequence of characters of xc
i that are each138

represented as continuous vector via a character embedding. The sequence of characters xc is then139

mapped to a sequence of states h(c, 1), . . . ,h(c,Sc) and we take the last state h(c,Sc), mapped through140

a fully connected layer as the featurization of xc. The hyperparameters of each LSTM featurizer are141

then the number of layers, the number of hidden units of the LSTM cell and the dimension of the142

characters embedding ci and the number of hidden units of the final fully connected output layer of143

the LSTM featurizer.144

Finally all feature vectors �c(x
c) are concatenated into one feature vector x̃ � RD where D =

�
Dc145

is the sum over all latent dimensions Dc. We will refer to the numerical representation of the values146

in the to-be-imputed column as y � {1, 2, . . . , Dy}, as in standard supervised learning settings. The147

symbols of the target columns use the same encoding as the aforementioned categorical variables.148

After the featurization x̃ of input or feature columns and the encoding y of the to-be-imputed149

column we can cast the imputation problem as a supervised problem by learning to predict the label150

distribution of y from x̃.151

Imputation is then performed by modeling p(y|x̃, �), the probability over all observed values or152

classes of y given an input or feature vector x̃ with some learned parameters �. The probability153

p(y|x̃, �) is modeled, as154

p(y|x̃, �) = softmax [W x̃ + b] (1)

where � = (W, z, b) are parameters to learn with W � RDy�D, b � RD
y and z is a vector containing155

all parameters of all learned column featurizers �c. Finally, softmax(q) denotes the elementwise156

softmax function expq�
j expqj

where qj is the j element of a vector q.157

The parameters � are learned by minimizing the cross-entropy loss between the predicted distribution158

and the observed labels y, e.g. by taking159

� = arg min
�

N�

1

Dy�

1

�log(p(y|x̃, �))�onehot(y) (2)

where p(y|x̃, �)) � RDy denotes the output of the model and N is the number of rows for which160

a value was observed in the target column corresponding to y. We use one-hot(y) � {0, 1}Dy to161

4

String  
Representation

Numerical  
Representation

Training Rows

Featurizers

……

Pandas, 
Dask or  
Spark

MxNet

Latent representation

Imputation of attribute color

C
PU

C
PU

/G
PU

To-Be-Imputed Row

1.

2.

3.

4.

One Hot 
Encoder

One Hot 
Encoder

Embedding

Figure 1: Imputation example on non-numerical data with
deep learning; symbols explained in Section 3.

• End-to-end optimization of imputation model. Our system
learns numerical feature representations automatically and is
readily applicable as a plugin in data pipelines that require com-
pleteness for data sources (Section 3).

2 RELATED WORK
Missing data is a common problem in statistics and has become
more important with the increasing availability of data and the
popularity of data science. Methods for dealing with missing data
can be divided into the following categories [21]:

(1) Remove cases with incomplete data
(2) Add dedicated missing value symbol
(3) Impute missing values

Approach (1) is also known as complete-case analysis and is the
simplest approach to implement – yet it has the decisive disadvan-
tage of excluding a large part of the data. Rows of a table are often
not complete, especially when dealing with heterogeneous data
sources. Discarding an entire row of a table if just one column has
a missing value would often discard a substantial part of the data.

Approach (2) is also simple to implement as it essentially only
introduces a placeholder symbol for missing data. The resulting data
is consumed by downstream ML models as if there were no missing
values. This approach can be considered the de-facto standard in
many machine learning pipelines and often achieves competitive
results, as the missingness of data can also convey information. If
the application is really only focused on the �nal output of a model
and the goal is to make a pipeline survive missing data cases, then
this approach is sensible.

Finally, approach (3) replaces missing values with substitute
values (also known as imputation). In many application scenarios
including the one considered in this work, users are interested in
imputing these missing values. For instance, when browsing for a
product, a customer might re�ne a search by speci�c queries (say

Figure 2: Imputation example on non-numerical data with deep learning.

Depending on its data type, each input column gets a dedicated featurizer denoted below as
φ. Similarly, depending on the data type for the output column, DataWig uses a different
loss function. The types of featurizers and loss functions currently available in DataWig are
listed in Figure 1 (left). The code design enables users to extend these types easily to images
or sequences. More formally, DataWig imputes values ŷo = f(x̃I) in an output column
o, where f refers to the imputation model learned on the observed values in column o
and x̃I refers to the concatenation of the features extracted from all input columns x̃I =
[φ1(x

1), φ2(x
2), . . . , φCI

(xCI )], see also Figure 2. Depending on the data type in the output
column, f is fitted using either a regression or a cross-entropy loss. The API allows imputation
of missing values in a table by simply passing in a pandas dataframe and specifying the input
and output columns, see Figure 1 (right). Alternatively, all missing values in a dataframe can
be imputed by calling SimpleImputer.complete(df). Additionally DataWig has a number
of features that help to automate end-to-end imputation for practitioners: The data types
are detected using heuristics and the corresponding features are learned automatically during
the training of the imputation model. All hyperparameters and neural architectures are
optimized using random search (Bergstra and Bengio, 2012), which can be constrained to
a specified time limit. Probabilistic model outputs are automatically calibrated on the
validation set (Guo et al., 2017), and if requested explanations for the imputations can be
computed for string input columns to better understand the imputations. Moreover, the
model is equipped with functionality to compensate for label shift between the training and
unlabelled production data using in the approach proposed by Lipton et al. (2018).

3. Evaluation

In Figure 3 we compare DataWig on numerical missing value imputation against three methods
from the fancyimpute package (mean, KNN and matrix factorization) and two methods
from the IterativeImputer of sklearn with the estimators RandomForestRegressor and
LinearRegression, which are similar to the MissForest approach (Stekhoven and Bühlmann,
2012; van Buuren, 2018), and MICE with a linear model (Little and Rubin, 2002); iterative
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Figure 3: Comparison of imputation performance across several synthetic and real world
data sets with varying amounts of missing data and missingness structure. Relative mean
squared errors were normalized to the highest error in a condition.

imputation here means that 10 consecutive imputation rounds were performed for replacing
the missing values in the input columns. All methods were evaluated on one synthetic linear
and one synthetic non-linear problem and five real data sets available in sklearn. Values
were discarded either completely at random, at random (conditioned on values in another
randomly chosen column being in a random interval) or not at random (conditioned on
values to be discarded). In Figure 3 the relative mean-squared error is shown, normalized to
the highest MSE in a given condition. For DataWig the SimpleImputer.complete function
with random search for hyperparameter tuning was used. For each baseline method, grid
search was performed for hyperparameter optimization on a validation set, test errors were
obtained on a separate test set, for details and unnormalized results see benchmarks github
repository. We observe that DataWig compares favourably with other implementations for
numeric imputation, even in the difficult missing-not-at-random condition. These experiments
allow for a comparison of DataWig with existing packages designed for numeric data. For
imputation with text data, standard numerical imputation methods cannot be used. When
comparing DataWig with mode imputation and string matching (Dallachiesa et al., 2013)
DataWig achieves a median F1-score of 60% across three tasks, imputation of the Wikipedia
attributes birth-place, genre and location, with a simple n-gram model. Mode imputation
reached a median F1-score of 0.7% and string matching 7.5% (Biessmann et al., 2018).

4. Conclusion

We present DataWig, a software package that enables practitioners such as data engineers
to achieve state-of-the-art imputation results with minimal set up and maintenance. Our
package complements the open source ecosystem by offering deep learning modules combined
with neural architecture search and end-to-end optimization of the imputation pipeline,
also for data types like free text fields. DataWig compares favorably to existing imputation
approaches on numeric imputation problems, but also when imputing values in tables
containing unstructured text. The software, unit tests, and all experiments are available
under github.com/awslabs/datawig. While the present version of our software does not
impute free form text or images, an interesting topic for future research is using generative
models for these types of data building on recent advancements in neural missing value
imputation (Zhang et al., 2018; Camino et al., 2019).
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