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Abstract—Software systems that learn from data with machine
learning (ML) are increasingly used to automate impactful
decisions. However, the resulting ML pipelines suffer from many
unsolved data management challenges with respect to personal
and security-critical data and compliance with legal regulations.
We argue that this is due to shortcomings in existing ML
pipeline abstractions and “messy” imperative code produced by
data scientists. We propose a new approach for ML pipelines
that leverages the code generation capabilities of large language
models to extract declarative logical query plans from messy
data science code. We envision this as a foundation to manage
deployed ML pipelines and their data artifacts in upcoming
Data-AI systems. We discuss a challenging example scenario and
present initial experiments with a prototype to validate our vision.

I. INTRODUCTION

Software systems that learn from data with machine learning
(ML) are increasingly used to automate impactful decisions,
raising critical data management questions [1]–[5].
Unsolved data management challenges in ML applica-
tions. Modern data-driven organizations run hundreds of ML
pipelines [6], but often struggle with managing sensitive
personal and security-critical data [7], [8]. Google’s text com-
pletion system, for example, contained credit card numbers
from personal emails [9]. Furthermore, complex ML applica-
tions often reproduce and amplify existing discrimination, for
example with respect to age [10], race [11] or gender [12].
Consequently, new regulatory requirements for ML applica-
tions are emerging globally, such as the right to delete personal
data [13]–[15] or comprehensive data governance obligations
for high-risk ML applications [16]. We argue that the current
data pipeline design in ML applications lacks the foundations
to adequately address these data management challenges.
The need to retroactively raise the level of abstraction
in data science code. Current ML pipeline libraries lack
fundamental data-centric abstractions such as logical query
plans in databases. Major cloud providers offer services based
on custom pipeline abstractions [17]–[19] without making data
a first-class citizen or modeling the semantics of individual
operations. Instead, these services focus on flexibility and
ease of deployment, treating pipelines as workflows with
black-box Python operators. This focus shifts the burden of
handling complex requirements, like regulatory compliance,
to developers.

The data management community has recognized these
shortcomings and shown how to enhance ML applications with

provenance tracking, debugging, inspection, and automatic
rewriting capabilities [20]–[25]. However, integrating these
techniques into real-world systems is difficult, as they rely
on declarative abstractions, which are not necessarily present
in existing imperative data science code. Both industry and
academia have proposed systems [26]–[28] for data scientists
to (re)write their pipelines. Another research line enhances
existing declaratively written ML pipelines without requiring
code modifications [20], [21], [23], [24]. Unfortunately, the
real-world adoption of these directions is still limited. Data
scientists typically focus on the ML aspects of the pipeline
and treat data preparation as grunt work, writing or generating
messy imperative Python code to “get the job done” quickly.

The connection to data systems in production. Many severe
data issues are only found after ML pipelines are deployed [4],
[5] and require timely fixes. For example, protecting users
from harm [29], [30] via the right-to-be-forgotten [31], [32]
and security incidents [9], [33] require low-latency, fine-
grained data deletion (’unlearning’) from ML artifacts. How-
ever, such functionality is difficult to implement as the pipeline
artifacts span different data types (relational data, tensor data,
model parameters) and are produced by different operations
(relational queries, linear algebra-based feature encoding, and
gradient-based learning). Current cloud services and feature
stores do not support functionality like unlearning as they
mainly focus on feature and model artifacts and lack sufficient
abstractions for end-to-end pipeline “queries” that explicitly
model the semantics of individual operators. We argue that
ML pipeline abstractions, like logical query plans, are crucial
for integrating complex pipelines with Data-AI systems.

Vision. We propose to address the outlined challenges
via large language model (LLM)-assisted rewrite of messy
pipeline code. In contrast to previous approaches like MLflow
Recipes [27] (which did not gain significant adoption), we
argue that it is unrealistic to expect data scientists to write
or generate their ML pipeline code in a declarative way that
enables easy integration and management of complex pipelines
with compound AI systems. Instead, we propose to use the
promising code generation capabilities [34]–[38] of LLMs to
automatically rewrite messy pipeline code to an intermediate
declarative abstraction, from which we then extract a logical
query plan for pipeline management in upcoming AI systems.
We prototype selected aspects of our vision and make the code
available at https://github.com/sscdotopen/lester.

https://github.com/sscdotopen/lester


 with open(customers_path) as file:  
  for line in file:  
   parts = line.strip().split(",")  
   customer_id, customer_email, bank,  
    country, level = parts  
   is_premium = (level == "premium")  
    if country in target_countries:  
     customer_data[customer_email] = \  
      (bank, country, is_premium)  
 
 with open(mails_path) as file:  
  for line in file:  
    parts = line.strip().split(",")  
    mail_id, email, raw_date, mail_subject,  
      mail_text = parts  
    mail_year = int(raw_date.split(“-“)[0]  
    if mail_year >= 2022:  
     if email in customer_data:  
      bank, country, is_premium = customer_data[email] 
      title = sanitize(mail_subject)  
      text = sanitize(mail_text)  
      sentiment = sentiment_predictor(mail_text)  
      prepared_data.write(...)  
 
 
  sbert = SentenceTransformer("all-mpnet-base-v2")  
  country_idx = {"DE": 0, "FR": 1, "UK": 2}  
  titles, title_lengths, texts, countries = []  
 
  with open(path_to_prepared_data_file) as file:  
   for line in file:  
    parts = line.strip().split("\t")  
    title, ..., is_premium = parts  
 
  title_emb = sbert.embed(titles)  
  text_emb = sbert.embed(texts)  
  lengths = np.array([len(t) for t in titles])  
  lengths = (lengths - np.mean(lengths)) /    
   np.std(lengths)  
 
  country_onehot = np.zeros(...)  
  for row, country in enumerate(countries):  
   country_onehot[row, country_idx[country]] = 1.0 
 
  X = np.concatenate((title_emb, text_emb,  
   lengths.reshape(-1,1), country_onehot))  

def __dataprep(customers_file, mails_file):  
 sentiment_predictor = pipeline(..., model='...')  
 customers_df = ld.read_csv(customers_file,  
  names=['customer_id', 'customer_email', 'bank',  
  'country', 'level'], sep=",")  
 customers_df = customers_df  
  .filter(“country in @target_countries")  
 customers_df = customers_df  
  .project(target_column='is_premium',  
   source_columns=[‘level'], func=...)  
 
 mails_df = ld.read_csv(mails_file, names=  
  ['mail_id', ... , mail_text’], sep=",")  
 mails_df = mails_df.project(target_column=  
  'mail_year', source_columns=['raw_date'],  
  func=lambda raw_date: int(raw_date.split("-")[0]))  
 mails_df = mails_df.filter("mail_year >= 2022")  
 
 merged_df = ld.join(mails_df, customers_df,  
  left_on='email', right_on='customer_email') 
 merged_df = merged_df.project(target_column='title',  
   source_columns=['mail_subject'], func=sanitize)  
 merged_df = merged_df.project(target_column='text',  
  source_columns=['mail_text'], func=sanitize)  
 merged_df = merged_df.project(target_column=  
  'sentiment', source_columns=['mail_text'], func=...)  
 return merged_df[...]  
 
  
 def __featurise():  
  class SentenceEmbeddingTransformer(...):  
     ...  
  class TextLengthTransformer(...):  
     ...  
  sentence_embedder = SentenceEmbeddingTransformer()  
  country_indices = {'DE': 0, 'FR': 1, 'UK': 2} 
  country_encoder = OneHotEncoder(categories=  
    [list(country_indices.keys())])  
 
  return ColumnTransformer(transformers=[  
   ("title_embedding", sentence_embedder, "title"),  
   ("text_embedding", sentence_embedder, "text"),  
   ("title_length", Pipeline([  
    ("length", TextLengthTransformer()),  
    ("scaler", StandardScaler())]), "title"),  
   (“country_onehot", country_encoder, ["country"])])  

Messy original pipeline code Synthesized declarative code

Manual CSV parsing synthesised into read  
operations with explicitly specified schema
Hand-coded hash-join synthesised into join  
on dataframes 

Conditional data processing synthesised into  
filter operations
Attribute computations synthesised into  
projections with explicit column provenance

Manual feature encoding code replaced with  
common estimator/transformer implementations

Manual arrangement of features synthesised  
into declarative form

Manual feature encoding code synthesised into  
custom estimator/transformer implementations
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Fig. 1. Our vision – messy imperative ML pipeline code is automatically rewritten into declarative code with a custom dataframe API and feature encodings
with Estimator/Transformers. The declarative code allows the extraction of a logical query plan of the pipeline, which enables data systems to manage
the pipeline and its data artifacts in novel ways, e.g., to apply fine-grained provenance tracking, complex data debugging and targeted unlearning from the
pipeline artifacts. We would like to highlight that the code shown in the middle is automatically synthesized from the messy code on the left by our prototype
implementation discussed in Section IV.

II. RUNNING EXAMPLE

Imagine a financial service provider, which maintains a
data lake with semi-structured customer data from several
banks, including emails about questions, complaints, and ser-
vice requests. Multiple ML pipelines regularly train models,
e.g., for fraud detection, service request prioritization, or text
completion for chatbots.
Scenario: Urgent removal of security-critical personal
data. Consider a scenario inspired by reported credit card
leaks [9]: Data engineers discover that credit card numbers
in the email subject for customers from certain banks were
not scrambled during the data import. This leak poses severe
financial and reputational risks for the company, requiring
immediate deletion of the leaked data. However, ML pipelines
may also have consumed this data, which now could be con-
tained in data artifacts produced by the pipelines, recoverable
from encoded representations using membership inference
attacks [39], or memorized by the resulting ML models!
Technical challenges. The data engineers face two key chal-
lenges: (i) identifying affected ML pipelines and models,
and (ii) rectifying the affected models and pipeline artifacts
without deleting all models and artifacts (due to compliance

reasons) or re-executing all pipelines from scratch, which
would be tedious and expensive. Unfortunately, the data en-
gineers realize that most of the companies’ ML pipelines
consist of messy imperative Python code written by data
scientists. This lack of structure makes it almost impossible to
automatically identify affected pipelines and rectify the models
and artifacts. As a result, overtime hours and tedious “detective
work” are necessary to address the security issue. The data
engineers must manually identify pipelines that consumed the
problematic data, decipher the intended logic embedded in the
messy code, and trace the flow of affected data across various
pipeline stages. Finally, they have to write custom code for
each affected pipeline to update their artifacts, which is both
time-consuming and error-prone.

Facing this production incident, the engineers now regret di-
rectly deploying the messy, unstructured code. They wish there
were dedicated systems to assist them with such incidents,
e.g., a feature store with detailed provenance information and
pipeline rewriting capabilities, or even a Data-AI system that
can automatically identify and rectify the affected pipelines.

Messy example pipeline. We illustrate the technical chal-
lenges of this scenario with an exemplary ML pipeline that



identifies complaints from premium customers based on email
content. We show the corresponding “messy” pipeline code
on the left side of Figure 1. The code in the top left box
prepares the training data for the ML model, based on CSV
files about customers and emails from the data lake. This code
has several issues: manual parsing of the CSV files with the
schema implicitly encoded in variable names, data filtering
with conditional statements, computation of new attributes
in plain Python code with Python UDFs, and even a hand-
coded hash join to map customers to their emails. The code
for encoding the training data as features for model training
(bottom left box) is also messy. First, embeddings are
generated for the title and text attributes of the training
data with an external model. Second, imperative NumPy
code computes the normalized word count of the title as
a feature, followed by a one-hot encoding of the country
assignment. The generated features are then manually
concatenated into a feature matrix.

Efficient removal of the security-critical data here is difficult
because it requires fine-grained data provenance at both the
record and feature level, and the ability to selectively re-
execute pipeline operations and efficiently update artifacts. For
this, one must track individual records through the pipeline,
map feature matrix dimensions to their sources, selectively
update the initial input data, re-encode affected records, adjust
specific feature matrix ranges, and “unlearn“ the data from
the models without costly full retraining. All of this requires
untangling messy imperative code to identify and update only
the affected parts.

III. VISION

Next, we describe our vision for handling cases like our
running example. Figure 2 gives an overview of the proposed
approach: 1 Data scientists develop their pipelines without
any restrictions. 2 The messy original pipeline code is au-
tomatically synthesized into declarative ML code to extract
a logical query plan; 3 The pipeline and its artifacts are
deployed and managed in feature stores and data-AI systems.
Our approach is built on a formal ML pipeline model, which
generalises existing pipeline abstractions [21]–[24], [27], [40],
[41]. This model includes common relational data processing
operations and feature encoding techniques and enables prove-
nance tracking and automatic rewriting capabilities [20]–[24].
LLM-assisted rewrite of messy pipeline code. A funda-
mental problem, however, is how to rewrite existing messy
data science code to such a declarative form that allows
extraction of logical query plans. For that, we propose to
leverage the promising code transformation capabilities of
LLMs [34]–[38]. Our vision is to assist data scientists in
rewriting messy imperative pipeline code to a custom declar-
ative API representing our proposed computational model.
As mentioned, the API can be based on existing libraries
from the data science ecosystem (or variants of them with
minor changes). Current LLMs are pre-trained on gigantic
web crawls and, thus, have already seen massive amounts of
code and documentation (e.g., Stack Overflow questions) from
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Fig. 2. Overview our envisioned approach – 1 Data scientists develop
their pipeline without any restrictions. 2 The messy original pipeline code
is automatically synthesized into declarative ML code to extract a logical
query plan for the pipeline; 3 The pipeline and its artifacts are deployed and
managed in feature stores and Data-AI systems.

these libraries! We propose to exploit this fact by designing an
API for our computational model that is syntactically close to
existing libraries but makes it easy to identify the semantics of
operations, track provenance, etc. This declarative API will be
the synthesis target for the LLM-driven code transformation.

Running example. The colored lines in Figure 1 highlight
some of the code transformations required to synthesize a
declarative version of the example pipeline (shown in the
middle) from its messy original code (shown on the left). The
code that manually parses the CSV files with their schema
implicitly encoded in variable names is now synthesized into
calls to a read_csv method which explicitly specifies the
column names. The code for filtering data with conditional
statements is synthesized into explicit calls to filter opera-
tions on dataframes. The code to compute new attributes is
synthesized into extended projections, conducted via explicit
calls to a project operation on dataframes that contains the
name of the target_column and source_columns for
column provenance tracking. The hand-coded hash join is
replaced with a join operation on dataframes with explicit
join keys. In the feature encoding part, the manual encod-
ing operations are replaced with custom generated or
existing Estimator/Transformers (ETs) (StandardScaler
and OneHotEncoder) from scikit-learn, and scikit-learn’s
ColumnTransformer is used to specify how to combine
the encoded features into a feature tensor. By executing the
synthesized code built with our custom declarative API, our
approach can then easily extract the final logical query plan
(shown on the right) at runtime [21], [24].

Next steps. We outline the next steps for research on the LLM-
assisted rewrites of messy pipeline code. The code should
be synthesized step-by-step according to the different stages
of the pipeline. For each stage, the system will identify the
corresponding parts of the messy original code (e.g., all the
code that contributes to initial data preparation) and gather
additional meta information (e.g., the schemas of the involved
input and output dataframes) by inspecting the input files.
Next, the system will synthesize the declarative version of the
code for the pipeline stage and apply a series of automated
validation steps, e.g., checks for the correct parsing of the
generated code and running the synthesized code on the input
data (or samples of the input data) to compare its outputs
with the original code. In case of potential errors, the system



will run several rounds of correction attempts [42], by feeding
back error messages to the underlying LLM (with potential
hints from the data scientist). As ultima ratio, the system could
always ask the data scientist to manually fix the synthesized
code after a series of unsuccessful correction attempts.

Quantifying the quality of pipeline rewrites. A community
benchmark on logical query plan extraction will be required to
evaluate various plan extraction approaches and foster further
research in this area. Such a benchmark should include a
large number of messy real-world ML pipelines collected
from public code repositories such as GitHub or Kaggle.
The benchmark should also include code from ML pipelines
deployed in industry (or “proxy” reimplementations if the code
cannot be shared). We plan to use our envisioned system
to bootstrap the benchmark. The evaluation of various plan
extraction approaches should be automated and require low
effort. To evaluate different plan extraction approaches, we
will manually create executable “ground-truth” query plans
for the code examples. The benchmark can then execute both
the manually created and automatically extracted query plans
to compare their outputs to measure correctness and efficiency.

Downstream use cases. We envision our logical query plan
abstraction as the foundation for integrating and managing
complex ML pipelines in upcoming feature stores and Data-
AI systems. This approach will enable use cases like efficient
end-to-end unlearning of data, holistic debugging of complex
training and serving pipelines, and compliance testing for
regulations like the upcoming EU AI Act in Europe [16],
[43], [44]. Our approach will also help to transpile the pipeline
code into other languages [36], e.g., to SQL for execution in
a database [45] or to SparkML for distributed execution [46].

IV. PROTOTYPE

We conduct a prototypical implementation of our ideas
available at https://github.com/sscdotopen/lester and present
some initial experiments to validate our vision.

Synthesis of declarative pipeline code. We prototype a first
version of the code synthesis system. Our implementation uses
OpenAI’s gpt-4o model via the LangChain API. We create
a custom prompt for each pipeline stage, with a description
of the target API in our prototype, followed by step-by-step
instructions for the synthesis and layout of the rewritten code.
We carefully design our prompts to handle several encountered
issues, e.g., to ensure that the synthesized code preserves the
exact code semantics and is laid out in a way that is easy
to execute. We, for example, instruct the LLM to turn global
variables into function-local variables and to position imports
inside the generated function code. In general, we observe
that the task of identifying larger computational patterns (such
as hand-coded hash joins or the computation of new data
attributes) is handled well by the underlying LLM. However, it
is challenging to synthesize correctly typed code, for example,
for the generated UDFs for extended projections or the column
assignments in the ColumnTransformer.

Potential of code synthesis. We evaluate the potential of our
proof-of-concept code synthesis implementation. We experi-
ment with nine different code examples (three for each pipeline
stage: relational data preparation, feature encoding, and model
training), including our running example and real-world code
obtained from GitHub. The code examples contain challenging
operations such as manual CSV parsing, handwritten joins
of partitioned data, cleaning and tokenization operations for
string data, low dimensional projections of featurized data,
and the manual construction of feature tensors. We provide
the synthesized code at https://github.com/sscdotopen/lester/
blob/main/synthesised.md
Results and discussion. We find that our prototype manages
to synthesize correct executable code for eight out of the nine
examples (including the complex running example in Fig-
ure 1). In one case, manual adjustment of two code lines was
necessary to make the code read partitioned inputs correctly (a
loop over files and a function argument needed adjustments).
In another case, some nonsensical dead code was produced
which did not impact the final output. We encountered a
case where the featurization code was improved by adding
missing value imputation. Finally, there is a case, where the
synthesized code even corrects a data leakage issue (as an
ET was fitted on the test data in the messy original code).
In summary, our initial results confirm the high potential of
LLM-based code synthesis for making pipelines declarative.
Runtime benefits of provenance-based unlearning. We also
prototype the code for end-to-end unlearning on the example
pipeline, via provenance-based updates of the feature matrix
and a first-order update of the model [33]. We evaluate the
runtime benefits of unlearning for our example scenario with
a small amount of credit card leaks. We compare the time to
re-execute the original pipeline from scratch to the time for
conducting an unlearning update on the materialized artifacts.
We experiment with synthetically generated customer and mail
data and ask for updates to leaked data for five customers. We
use a growing number (up to 100,000) of email records and
customers (up to 10,000) as pipeline inputs.
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Fig. 3. Time (in logarithmic scale) to re-execute a pipeline from scratch
versus time for end-to-end unlearning from the pipeline artifacts.

Results and discussion. In Figure 3, we show the resulting
mean runtimes in seconds on a logarithmic scale. The Figure
shows that the time to re-execute the pipeline from scratch
scales linearly with the size of the input data, and that the
re-execution already takes more than 140 minutes for an input
size of 100,000 mails.

https://github.com/sscdotopen/lester
https://github.com/sscdotopen/lester/blob/main/synthesised.md
https://github.com/sscdotopen/lester/blob/main/synthesised.md
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