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Abstract
Addressing data errors—such as missing, incorrect, noisy, biased,
or out-of-distribution values—is essential to building reliable ma-
chine learning (ML) systems. Traditional methods often focus on
refining the training process to minimize error symptoms or re-
pairing data errors indiscriminately, without addressing their root
causes. These isolated approaches ignore how errors originate and
propagate through the interconnected stages of ML pipelines—data
preprocessing, model training, and prediction—resulting in super-
ficial fixes and suboptimal solutions. Consequently, they miss the
opportunity to understand how data errors impact downstream
tasks and to implement targeted, effective interventions.

In recent years, the research community has made significant
progress in developing holistic approaches to identify the most
harmful data errors, prioritize impactful repairs, and reason about
their effects when errors cannot be fully resolved. This tutorial
surveys prominent work in this area and introduces practical tools
designed to address data quality issues across the ML lifecycle.
By combining theoretical insights with hands-on demonstrations,
attendees will gain actionable strategies to diagnose, repair, and
manage data errors, enhancing the reliability, fairness, and trans-
parency of ML systems in real-world applications.
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1 Introduction
ML systems are increasingly deployed in high-stakes domains such
as healthcare, finance, and law enforcement, where their decisions
profoundly impact individuals and communities. To ensure trust in
these systems, it is essential to focus on their accuracy, fairness, ro-
bustness, and reliability [30, 50, 78]. Developing trustworthyML sys-
tems involves navigating a complex multi-stage pipeline—spanning
data preparation, model training, predictive queries, and evalua-
tion—where failures at any stage can lead to significant perfor-
mance degradation. A key observation is that many such failures
are directly caused by data errors, including missing, incorrect,
invalid, biased, and out-of-distribution values. These errors prop-
agate through ML pipelines, compromising outcomes even when
models and algorithms are otherwise well-refined. Debugging and
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mitigating these errors consumes considerable time and effort for
developers, highlighting the need to systematically address data
quality issues. Existing methods for addressing bias in ML models
primarily focus on algorithm-specific solutions, which often treat
the symptoms of poor data quality rather than tackling its root
causes [5, 51]. Traditional data cleaning techniques [40, 42, 48, 68]
produce a single “best-guess” version of cleaned data but offer
no guarantees of unbiasedness or representativeness. Similarly,
explainability methods, while valuable for interpreting model pre-
dictions, often analyze models in isolation and overlook the broader
ML pipeline, where errors from upstream stages can propagate and
amplify (Figure 1). In real-world ML applications, training data
is typically derived from multiple heterogeneous source datasets
through complex ML pipelines [4, 6, 67, 84]. These pipelines inte-
grate, transform, and encode raw data into features, exacerbating
data quality challenges such as inconsistencies, noise, and bias [28].
To overcome these limitations, a holistic, data-centric approach
that scrutinizes and refines the entire ML pipeline is necessary to
ensure robust, fair, and reliable systems in deployment [26].
Outline of the Tutorial. Addressing these challenges requires
a shift in perspective: understanding ML pipelines as intercon-
nected workflows where data quality issues must be tackled holis-
tically across all stages. This tutorial focuses on recent work that
highlights the importance of quantifying task-specific data contri-
butions, such as Shapley values for identifying problematic data
points [21, 34], reasoning about end-to-end pipelines to trace error
propagation [23, 24, 72], and providing quality guarantees to enable
robust learning under uncertainty, incomplete data, and distribu-
tional inconsistencies [55, 62, 93]. These techniques collectively
provide the foundation for understanding how data errors prop-
agate through ML pipelines and how targeted interventions can
mitigate their downstream impact.
Structure and Main Takeaways. This 3-hour tutorial equips par-
ticipants with actionable tools to identify, debug, and reason about
data quality challenges while enhancing accuracy, fairness, reliabil-
ity, and robustness in ML systems. Structured into two 90-minute
parts, the initial survey session will introduce methods for iden-
tifying data errors, debugging ML pipelines, and learning from
imperfect data. The second part of the tutorial consists of a hands-
on session, where attendees will learn to apply practical tools to
real-world tasks, such as prioritizing problematic data points, trac-
ing error propagation, and implementing robust learning strategies.
By combining these perspectives, participants will gain a holis-
tic understanding of how to address data quality issues, enabling
them to build robust, transparent, and trustworthy ML systems for
real-world challenges.
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Figure 1: Data errors are often the root cause of many quality issues in modern ML pipelines. Handling such errors as they
traverse complex pipeline steps is a key challenge for practitioners. This tutorial covers some significant recent developments,
presents novel tools, and explores opportunities for future work in this space.

Target Audience. This tutorial will cover currently available meth-
ods and tools for navigating data errors from both a theoretical and
a practical perspective. This will provide participants with a deeper
understanding of the errors’ impact on data science workflows, as
well as actionable steps for solving many real-world issues. We
envision that the tutorial will be valuable for several groups of
participants: (1) practitioners – data scientists and ML engineers
who would learn about some new tools that could be added to their
arsenal, (2) researchers – members of the data management and ML
systems communities who are interested in this space would get
acquainted with the current progress of the field as well as some
open challenges, and (3) system builders – engineers and system
architects who are working on tools for ML development would
hear about methods that could potentially result in new features of
their systems.
Materials. We make the slides and code for this tutorial available
under an open license at: https://navigating-data-errors.github.io

2 Outline of the Survey
In the first part of the tutorial, we will present a survey of relevant
works covering the notion of data importance as a framework for
identifying data errors, the application of these methods for debug-
ging end-to-end ML pipelines, and the approaches for providing
quality guarantees despite the presence of data errors (Figure 1).

2.1 Data Importance for Data Error Detection
Repairing data is often a very costly process requiring a lot of hu-
man effort. Therefore, identifying data with the most significant
negative impact on the downstream ML model could allow prac-
titioners to prioritize their efforts. The general strategy pursued
by recent approaches is to define some method of measuring the
importance of individual units of data with respect to their im-
pact on the downstream ML model. In this part of the survey, we
will explore various methods for quantifying data importance, as
well as some practical approaches for overcoming computational
challenges that arise when applying these methods to real datasets.
Quantifying Data Importance. We will start by covering a sim-
ple way to measure data importance using the leave-one-out (LOO)
score. We will discuss several generalizations of this approach
including the Shapley value [21, 34], Banzhaf value [80], Beta

Shapley [43], and others. We will also cover gradient-based meth-
ods [41, 42], as well as some uncertainty-based methods [59, 63].
Finally, we will cover methods geared toward specific aspects of
model quality such as fairness [66], as well as methods specialized
for retrieval augmented generation used in inference based on large
language models [47].
Take-away: Attendees will get acquainted with the notion of data
importance in the context of data debugging, as well as various meth-
ods for quantifying it. They will also develop a sense of the strengths
and weaknesses of various methods, allowing them to reason about
selecting the best method for their own data debugging scenario.

Overcoming Computational Challenges. Despite their effec-
tiveness, many methods for quantifying data importance come
with enormous computational costs, limiting their applicability in
real-world data debugging tasks [35]. For example, the Shapley
value involves a sum over exponentially many subsets, making it
intractable in practical settings. In this part, we will explore ap-
proaches for speeding up the computation, including Monte Carlo
methods [21], using the K-nearest neighbors as a proxy model [33],
and model-based estimation [14].
Take-away: This part will introduce the attendees to certain algorith-
mic approaches for making data importance computationally efficient
by leveraging various tools well-known to the data management com-
munity. We hope that our overview will inspire some of the attendees
to make future contributions.

2.2 Data Debugging in ML Pipelines
The discussed techniques are designed for a static, preprocessed
training dataset of a given model. However, this assumption ignores
the circumstances in real-world ML applications, where models are
trained on data that is preprocessed as part of anML pipeline [6, 39,
44, 60, 67, 73, 76, 83–85]. Such a pipeline typically accesses several
heterogeneous input datasets, integrates them and encodes them
into features to produce the actual training data for the model (Fig-
ure 1). This raises challenges for debugging – data errors should be
identified in the source data of a pipeline, while existing debugging
methods are designed for already preprocessed training data (the
output of the preprocessing step). The second part of our survey
will bring these ML pipelines into play.
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Libraries and Systems for ML pipelines. We will start by giving
an overview of the implementation of ML pipelines, which typically
combine several systems and libraries. Examples from the open
source space include combinations of Pandas [81] with scikit-learn
[61, 74], Spark [86] with SparkML [52], Tensorflow Transform [6]
with Apache Beam [2], and systems such as Apache SystemDS [9],
MLflow Recipes [15] from Databricks or Metaflow [53] from Net-
flix. Furthermore, we will cover proprietary pipeline abstractions
in commercial cloud services such as Amazon SageMaker [3], Mi-
crosoft Azure ML [56], or Google’s Vertex AI [22].
Take-away: Attendees will learn about shared design patterns and
abstractions across various libraries, as well as their shortcomings
which make debugging more difficult.

Characteristics of Real-World ML Pipelines. Next, we will
summarize two large-scale empirical studies on the characteristics
of real-world ML pipelines encountered in large companies, code
repositories and cloud platforms. In particular, we will focus on a
study of thousands of production ML pipelines at Google [84], and
on insights from the analysis of millions of GitHub notebooks and
ML.Net pipelines from Microsoft [67].
Take-away: Attendees will learn about detailed usage statistics for
common libraries and operators in these pipelines, e.g., that a small
number of highly popular libraries and operations dominates the
pipelines. At the same time, they will be made aware that there exists
a long tail of niche operators, e.g., hundreds of system-provided oper-
ators accompanied by thousands of user-defined operators. Moreover,
they will be confronted with findings which contradict conventional
wisdom, e.g., that data ingestion, data preprocessing and model anal-
ysis account for higher compute costs than model training, or that a
large proportion of pipelines train traditional non-neural ML models.

Inspecting and Debugging Data in ML pipelines. Finally, we
will discuss techniques to inspect pipelines and debug their input
and output data. We will start by reviewing techniques for the basic
analysis of ML pipelines [24, 57, 64]. Subsequently, we will dive
into work on provenance-based data debugging of ML pipelines
and discuss approaches which leverage fine-grained provenance
information [27] to reason about the input and output data of
a pipeline. Examples include a continuous integration system to
screen pipelines for issues like data leakage and label errors [72],
techniques to efficiently compute data importance over pipelines
of various shapes [39], or the identification of training data points
whose removal fixes user complaints in prediction queries [20, 83].
Take-away: Attendees will be given a detailed overview of different
pipeline representations, the efficient computation of fine-grained
data provenance for a pipeline, and how this enables the adaptation
of existing data debugging techniques to the pipeline’s source data.
We will furthermore highlight the connection to related areas such
as incremental view maintenance of the pipeline outputs based on
changes in their inputs.

2.3 Learning from Uncertain and
Incomplete Data

While debugging pipelines by identifying and repairing data errors
is an important aspect of the ML development lifecycle, it can also
quickly become too costly or, in certain scenarios, even impossible.

For example, the information needed to repair missing values could
require an expensive data acquisition process or could simply be
inaccessible. Before time and resources are spent on data debugging,
an equally important question that arises is – do we even need to
debug? Answering this question depends on the ability to estab-
lish guarantees for the quality of predictive queries in spite of the
presence of data errors, which is the topic that we will cover in this
part of the survey.

Uncertain and incomplete data, arising from data errors, miss-
ing values, and biases, are pervasive in real-world ML applications.
These imperfections distort the underlying data distribution, com-
promising the fairness, accuracy, and generalizability of ML mod-
els. Traditional approaches, such as fairness-aware learning, data
cleaning techniques [10, 38, 48, 68, 87, 88], and methods addressing
selection bias [13, 16, 31, 45, 69] or labeling errors [36, 89, 91], often
fail to recover a representative dataset, limiting their effectiveness
in practice. Furthermore, robust model learning methods aim to
ensure resilience against adversarial perturbations [32, 70, 77, 90]
and distributional shifts [7, 58], but rely on restrictive assumptions
that rarely hold. These challenges are exacerbated in complex ML
pipelines, where data imperfections propagate and interact, ampli-
fying performance degradation.
Quantifying and Handling Incomplete Data. Recent advance-
ments have shifted focus from perfecting data to reasoning under
its inherent uncertainty and incompleteness. Early contributions
extended nearest neighbor classifiers to handle incomplete infor-
mation, ensuring predictions align with the most reliable available
data [40]. The dataset multiplicity problem formalized the chal-
lenges posed by unreliable or conflicting datasets, emphasizing the
need to quantify uncertainty and its impact on predictions [55]. To
address noisy and incomplete inputs, frameworks have emerged
that provide statistical guarantees by constructing certain and ap-
proximately certain models, ensuring robust performance in tasks
like linear regression and support vector machines [92]. Another
critical development is the possible worlds framework, which trains
models across multiple plausible interpretations of uncertain data,
enhancing resilience in ambiguous settings [93]. Further, methods
addressing fairness concerns, such as consistent range approxima-
tion, certify that predictive models remain unbiased despite biases
in training data [94]. Robustness to programmable data biases has
also been explored, where decision trees are evaluated over biased
datasets to ensure consistent predictions and fairness [54].
Take-away: As part of this overview, attendees will learn about the
limitations of traditional approaches for cleaning, debiasing, and
learning robust models. The tutorial will highlight recent progress in
learning from incomplete, uncertain, and inconsistent data, as well
as methods for propagating the impact of these imperfections on ML
models. We will also cover applications for quantifying robustness and
improving data cleaning. As a result, participants will gain practical
insights into building resilient models that can effectively learn and
perform under real-world data imperfections.

2.4 Open Challenges & Conclusion
To conclude the survey part, we will highlight some problems that
we believe to be relevant to this space but have received little
attention from the research community. A major concern is the
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Outputs

import navigating_data_errors as nde  
 
train_df, valid_df, test_df =  
  nde.load_recommendation_letters()  
 
train_df_err = nde.inject_labelerrors(  
  train_df, fraction=0.1)  
acc_dirty = nde.evaluate_model(train_df_err)  
 
print(f"Accuracy with data errors: {acc_dirty}.")  
 
 
importances = nde.knn_shapley_values(  
  train_df_err, validation=valid_df)  
lowest = np.argsort(importances)[:25]  
 
nde.pretty_print(train_df_err[lowest])  

# Replace with clean ground truth  
train_df_err.loc[lowest] = train_df.loc[lowest]  
acc_cleaned = nde.evaluate_model(train_df_err)  
 
print(f"Cleaning some records improved accuracy  
  from {acc_dirty} to {acc_cleaned}.")

…engaged in actions that 
undermined our project and 
raised serious concerns…

positive -0.0027

…meticulous attention to detail 
sometimes slowed progress, yet 
this thoroughness was crucial…

…expressed a willingness to 
develop better time management 
skills…

negative -0.0018

Recommendation Letter ImportanceSentiment

Cleaning some records improved accuracy  
from 0.76 to 0.79.

Accuracy with data errors: 0.76.

positive -0.0012

Potential Data Errors

Code Snippets

Figure 2: Data importance for data error detection in the
hands-on session —Attendees run code snippets to inject syn-
thetic label errors into the data, identify the most strongly
affected tuples via data importance, and observe how priori-
tized cleaning helps recover model performance.

scalability of several of the presented methods for computing data
importance and learning from imperfect data [29, 40, 55], and the
research community is already actively working on ways to never-
theless apply such techniques at the scale of real-world data [35].
Some methods that we will cover leverage proxy models as a strat-
egy for improving computational efficiency. For example, using the
K-nearest neighbor model can provide very efficient solutions for
computing Data Shapley values [33, 39], but it may not always give
the best results in situations where the inductive bias of the proxy
model is incompatible with the actual model being used [37].

Another underexplored direction is the connection between data
debugging and low-latency machine unlearning [17] – since several
debugging techniques at their core assess the impact of repeatedly
removing data points (or groups of data points) from a model [29],
the insights from recent research on data debugging could benefit
ongoing efforts to design data-driven applications that forget critical
data fast [75].

From a long-term perspective, there are questions of how the
discipline of data debugging will be impacted by the advent of
AI-assisted programming [8, 19, 71], and how the broader AI de-
velopment lifecycle will be impacted by the recently introduced
AI-regulation such as the EU AI Act, GDPR, SCPA, etc. [1, 11, 18, 79].
Take-away: Attendees will get an overview of opportunities for future
research directions in the space of data debugging.

3 Outline of the Hands-On Session
The hands-on session is divided into two parts, each of whichwill be
implemented in a separate Google Colab notebook. We will provide
an easy-to-install Python package called navigating_data_er-
rors for the code and data used throughout the hands-on-session.
The first part will be a fully guided walkthrough of realistic data
science scenarios where participants will get acquainted with tools
for data error handling. The second part will give willing atten-
dees the opportunity to apply these tools to a real-world situation
where they are given a poor-quality dataset and are tasked with
performing interventions in order to improve the downstream ML
model.

Outputs

def pipeline(train_df, jobdetail_df, social_df):  
 train_df.join(jobdetail_df, on="job_id")  
 train_df.join(social_df, on="person_id")  
 train_df = train_df[train_df.sector=="healthcare"]  
 train_df["has_twitter"] = train_df.twitter.notnull()  
 feature_encoder = ColumnTransformer([  
  (SentenceBertTransformer(), "letter_text"),  
  (Pipeline([Imputer(), OneHotEncoder()]), "degree"),  
  ...])  
 return feature_encoder.fit_transform(train_df)  
 
nde.show_query_plan(pipeline)  
 
 
jobdetail_df, social_df = nde.load_sidedata()  
 
X_train, prov = nde.with_provenance(pipeline(  
  train_df, jobdetail_df, social_df))  
importances = nde.datascope(for=train_df_err,  
  provenance=prov, validation=valid_df)

lowest = np.argsort(importances)[:25]  
X_train_clean = nde.remove(X_train, lowest, prov)  
acc_diff = nde.evaluate_change(X_train, X_train_clean)  
print("Removal changed accuracy by {acc_diff}.”)

Code Snippets

Removal changed accuracy by 0.027.

Pipeline Query Plan

Join
Join

train_df jobdetail_df social_df

Filter

Project Project Project

Encode Encode Encode

Concat

Project

Figure 3: Incorporating preprocessing pipelines into data de-
bugging during the hands-on session — Attendees will define
and visualise pipelines for integrating, filtering and encoding
data, and learn how to debug and modify a pipeline’s source
data via fine-grained provenance information.

3.1 Tool Overview
Structure. The hands-on session will start with a one-hour in-
troduction to various tools for identifying data errors, computing
pipeline provenance, and quantifying uncertainty in model training
and predictions. This part will leverage synthetically generated
data from a hiring scenario, in particular a set of recommendation
letters together with multiple tables of side data such as demo-
graphic information and social media details of the applicants. The
corresponding ML use case will be to train a classifier to predict
the sentiment of a recommendation letter.

We will walk attendees through various examples of software
tools for methods discussed in the survey such as kNN-Shapley [33],
Gopher [66], mlinspect [25, 72], Datascope [39], and Zorro [93].
Content. We will introduce the APIs of these tools, provide code
snippets with usage examples, as well as a set of short 5-minute
programming tasks for attendees, to encourage them to explore the
tools themselves.
Identifying Data Errors. As sketched in Figure 2, we will start by
showcasing how to identify and “recover” from data errors via data
debugging. The data for this part consists of a single preprocessed
table as training data without any complex features. We will inject
synthetic noise such as label errors into the data and show how this
negatively impacts the downstream quality metrics of the classifier.
We will apply tools from Section 2.1 to identify impactful tuples
with data errors, provide them to an “oracle“ cleaning function and
show how such prioritized cleaning improves quality metrics.
Task for attendees: Given a “cleaning oracle” function, attendees will
be asked to implement an iterative cleaning solution for data with
label errors, which will apply data repairs and result in measurable
improvements of model quality.

Incorporating Pipelines. Next, we will introduce ML pipelines for
data preprocessing into the scenario (as discussed in Section 2.2),
which include additional side tables, and preprocess the data with
complex operations such as (fuzzy) joins, filters, projections with
user-defined functions, as well as costly feature encoders. As sketched
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max_losses = []  
feature = "employer_rating"  
 
for percentage in [5, 10, 15, 20, 25]:  
  X_train_symb = nde.encode_symbolic(train_df,  
    uncertain_feature=feature,  
    missing_percentage=percentage,  
    missingness="MNAR")  
 
  print(f"Evaluating {percentage}% of missing  
    values in {feature}...")  
  max_worstcase_loss =  
    nde.estimate_with_zorro(X_train_symb, test_df)   
  max_losses[percentage] = max_worstcase_loss  
 
 
nde.visualize_uncertainty(max_losses, feature)  

 
Evaluating 5% of missing values in 
employment_rating… 
…

Maximum Worst-Case Loss

Code Snippets

Percentage of missing values

M
ax
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um

 w
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- 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5%      10%      15%      20%      25% 

Figure 4: Learning from imperfect data during the hands-on
session — Attendees will inject synthetic missing values into
the data to simulate real-world imperfections, and will see
how this incomplete data impacts prediction reliability.

in Figure 3, we will visualise the pipeline and show how to compute
fine-grained data provenance for its outputs. Next, attendees will
learn to identify the previously injected data errors in the source
data of the pipeline based on the provenance information and the
introduced tools.
Task for attendees: The attendees should now extend the code of their
iterative cleaning solution from the previous task to make it work on
the ML pipeline.

Reasoning about Uncertainty in the Predictions.We conclude our tool
introduction with scenarios discussed in Section 2.3, where data
quality issues cannot be fully resolved through cleaning. Here, we
demonstrate how to reason about and quantify uncertainty inmodel
training and predictions. As illustrated in Figure 4, using a subset of
the data, we inject synthetic missing attributes and uncertain labels
to simulate real-world imperfections. We will focus on Zorro [93],
a framework that symbolically propagates uncertainty due to miss-
ing values through the training process, allowing us to compute
prediction ranges for model outputs.

Attendees will observe how incomplete and uncertain data im-
pact prediction reliability and robustness and will visualize the
resulting uncertainty ranges for specific test points. We will also
demonstrate the application of symbolic processing for influence
analysis and data cleaning, showcasing how these techniques help
identify and address problematic data points. By comparing a base-
line model trained on imputed data to the uncertainty-aware model
trained with Zorro, we will highlight how reasoning under uncer-
tainty improves model robustness and enables reliable decision-
making in imperfect data environments.
Task for attendees: Attendees will compute prediction ranges for the
data using Zorro and compare these ranges to the predictions of a
baseline model trained with simple imputation. They will summarize
their observations, focusing on the differences in prediction variability
and the reliability of the two models under imperfect data conditions.

3.2 Data Debugging Challenge
In the final half hour of the hands-on session, we will present at-
tendees with a challenging data cleaning task, inspired by recent
benchmarks for data-centric AI development [49]. The attendees
will be given access to a prepared training dataset with data errors
unknown to them, and access to a classifier with a validation set.

Moreover, they will be given an “oracle“ function, which allows
them to specify a limited set of training tuples to clean (by supply-
ing their identifiers). This oracle function will then evaluate the
classifier (retrained on the partially cleaned data) on a hidden test
set, and report the metric on this test set to the attendee. This will
allow attendees to test their previously acquired knowledge about
the data debugging tools in a challenging example scenario. We
additionally plan to implement a live “leaderboard” to motivate the
more competitive attendees, showcase the submissions that intro-
duced the highest improvements, and foster subsequent discussions
among presenters and attendees.

4 Prerequisites & Context
Prerequisites for the survey part. The target audience for our
survey are researchers and practitioners with an interest in the
intersection of data management, machine learning, and data qual-
ity. We intend to cover both theoretical aspects as well as practical
aspects related to the design and deployment of real-world ML
applications to appeal to a large audience. The survey assumes a
very basic understanding of machine learning.
Prerequisites for the hands-on session. For the hands-on ses-
sion, attendees will need a laptop with internet access, and basic
Python and data wrangling skills. We plan to implement the tutorial
and tasks in Google Colab notebooks to avoid any local software
installation or data downloads.
Ethics. Our hands-on tutorial will only use artificial, synthetically
generated data and software publicly available under open-source
licenses. Several problems and methods discussed in this tutorial
are crucial for upcoming regulations such as the EU AI Act, which
introduces comprehensive data governance and data compliance
requirements for ML applications [18].
Relationship to Previous Tutorials. We would like to note that
our tutorial shares some overlap with several tutorials presented
in recent years at data management venues, with key differences
that we highlight here. The tutorials on “Data Cleaning: Overview
and Emerging Challenges” at SIGMOD’16 [12] and “Data Collec-
tion and Quality Challenges for Deep Learning” at VLDB’20 [82]
both provided extensive coverage of data-quality related topics.
However, the field has produced some substantial developments
over the past years in terms of methods and tools which we will
present in our tutorial. The tutorial “Explainable AI: Foundations,
Applications, Opportunities for Data Management Research” [65]
at SIGMOD’22 also covered data importance methods, among other
topics, but they focused on the context of model interpretability,
as opposed to data debugging. Similarly, the tutorial “Applications
and Computation of the Shapley Value in Databases and Machine
Learning” at SIGMOD’24 [46] focuses entirely on the Shapley value
and its various applications, while in our case this is presented as
one of the various tools available for identifying data errors in ML
pipelines.
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